Jasymca 2.0 - Symbolic Calculator for Java

Helmut Dersch

March 15, 2009

Abstract

Jasymca is an interactive System for solving math problethsup-
ports arbitrary precision numbers and symbolic variab&salars, vectors,
and matrices can be built from all datatypes and used in legicns. From
the pseudoinverse of symbolic matrices over trigonomeineplifications
to symbolic solutions of integrals and systems of equatitmess main func-
tionalities of CAS-programs are provided. Additionalyglmiperformance
numerical routines from LAPACK and a plotmodule are implated. The
user interface can be selected from either an Octave/M8&ttdkab-like lan-
guage or a GNU-Maxima style. Three versions of Jasymca aradad
which cover almost any computer platform: A Midlet versiam portable
devices like cellphones or PDAs, a java application for tgslCs, lap-
tops and workstation, and an applet which can be integratecebpages.
Jasymca is free software covered by the GNU public license.

Contents

1 Introduction 3

2 Working with Jasymca 4
21 Numbers. 4
2.2 Operatorsand Functions 6
2.3 Variables 8
2.4 \VectorsundMatrices(1) 11
25 Plotting 14
26 Polynomials (1) 17
27 Files e 18

2.8 Programming 19

281 Functions 19
28.2 Branches 20
283 Loops e 20
2.84 JumMpPS . .. e e 21
29 Vectorsand Matrices(2) 22
29.1 LAPACK e 24
2.10 SymbolicVariables 27
2.11 Polynomials (2) and Rational Functions 27
211.1 RoOts 28
2.11.2 Squarefree Decomposition 29
2.11.3 Division, Greatest Common Denominator 29
2.11.4 Real-andImaginaryPart 29
2.12 Symbolic Transformations 30
2.12.1 Substitution 30
2.12.2 Simplifying and Collecting Expressions 31
213 Equations 32
2.13.1 Systems of Linear Equations 32
2.13.2 Nonlinear Equations 33
2.13.3 Systems of Nonlinear Equations 34
214 Calculus 34
2.14.1 Differentiation 34
2.14.2 Taylorpolynomial 35
2.14.3 IndefinitelIntegral 35
2.14.4 Numerical Integration 37
2.14.5 Differential Equations 38
Maxima-Mode 38
Reference 40
41 General 40
42 Commands 40
4.3 0perators e e e 41
431 Define. 41
432 Calculate 41
4.3.3 Comparison and Logical Operators 42
4.4 Programming e e 43
45 FUNClions 44

451 Scalar 44

452 ScalarFunctions 45
453 \Vectorsand Matrices 46
454 Polynomials00 47
455 Equationsand Expressions 47
456 Calculus 48
457 Plots 48

5 Installation 49

6 License 50

1 Introduction

Jasymca has been developed for teaching mathematicsjadptxfacilitate a
fast and easy entrance to computer mathematics. One of timeafstacles are
pocket calculators, which prevent many students from usamgputers for math.
Pocket calculaters are cheap and portable, while CAS-progjiare often expen-
sive and always require at least a laptop to run. Jasymcaésdoftware and
runs on almost any system equipped with a microprocessam fnobile phones
and pdas to windows/linux/macos computers, even on ganmsotamor internet
routers.

Jasymca 2.0 is based on Jasymca 1.01 [1] with significanhgixtes and im-
provements. Apart from the new grammar (Jasymca 1.01 wasnhdaj<] - ori-
ented), matrix and plotfunktionen were added, as well apénser and compiler
completely rewritten. The user interface defaults to aestgiminiscent of Oc-
tave [4], Matlab [5] and SciLab [6], without copying eachaietUsers of either
of these programs should have no problems using Jasymcafcartle sake of
teaching, vice versa. The main extension to these prograuthe iseamless inte-
gration of symbolic calculations, which do not require sapecommands.

The user interface can be switched to GNU-Maxima-stylectvis more con-
veniant for some problems, see chapter 3 for details.

Chapter 2 of this document is a tutorial with examples andoeses, par-
tially taken from our introductory Computer-Mathcoursedogineering students.
Most examples can be solved by the applet at the Jasymcapag®¢8], and
do not require any installation. The next chapter brieflylaxs the alternative
Maxima-mode. An overview and reference to all commands;tfans and op-

tions follows (chapter 4), and the last chapter (5) deal$ wechnicalities of
installing Jasymca on computers and mobile devices.

2 Working with Jasymca

Your computer must be equipped with a recent Java-Versioh §). No further
installation is required: Just visit the Jasymca-homepapi® start the program.
Of course, you can also use a local installation on any deigjstem, see chap-
ter 5 for an installation guide.

Jasymca starts up in Octave-mode. Commands are entergdhsikeyboard
in the textinput field in the lower part of the window. The riésware displayed
and saved in the upper large textarea. The zoom-functidgreim@ain menu adjusts
font size. The buttons and> recall earlier commands (scrolling the command
history). The same operation is acieved by typing the arreyslof the keyboard,
and is an importand aid for efficient working.

Typing demoENSstarts a 5-minutes demonstration of Jasymca’s capabilitie
In the following examples and exercises the verbatim respah Jasymca is dis-
played; to repeat the results you have to copy the text dfeeptompt £>) into
the textinputfield and pressiter.

2.1 Numbers

Numbers are entered in the usual Computer format: with optidecimalpoint
and decimal exponent following the lettei(or E). The numbers 5364 and
—1.72347826534210 should be entered like:

>> 5364

ans = 5364

>> -1.723478265342e12
ans = -1.7235E12

Most of the time these will be stored as floating point dataifidie, IEEE standard
754). They are rounded to 5 significant digits for displayt fau calculations
the full precision of this format is always preserved (15dBgimal digits). By
switching the formatformat long) all significant places are displayed.

>> format long
>> -1.723478265342e12
ans = -1.723478265342E12

As an extension Jasymca offers the commfmmchat Base Number , which
is used to display numbers in a system with arbitBage with any Number of
significant digits. To display numbers with 15 digits in thedry system we type:

>> format 2 15
>> -1.723478265342e12
ans = -1.1001000101001E40

Usingformat short returns the display mode to default (short decimal). It
should be emphasized, that none of the format commandsnicfigehednternal
representation and accuracy of floating point numbers.

Numbers, which are entered without decimal point and expiraad which
are larger than 19 are stored as exact rational datatype. These numbers are
internally represented as quotient of two variable lengtkegers (java datatype
Biginteger), which allows you to perform calculations without any rdinyg
errors. In the first case of the following example a floatinghpoumber is gener-
ated, in the second case an exact rational:

>> 10000000000000001.
ans = 1.0E16

>> 10000000000000001
ans = 10000000000000001

Each floating point numbet can be converted to an exact number using the com-
mandrat(Z) . The conversion is accomplished by continued fraction e
with an accuracy determined by the variatdéepsilon (default: 10°®).

>> rat(0.33333333333333333)
ans = 1/3

Operations between exact and floating point numbers alveaygktb the promotion
of floating point numbers. Calculations can be performetouit rounding errors
by “rationalizing” just the first number.

>> 1/21/525/21/5 * 7x175%63* 15-1

ans = -4.4409E-16

>> rat(1)/21/525/21/5 * 7% 175+ 63* 15-1
ans = 0

Conversely, the commarftbat(2) converts numbers into floating point for-
mat. Both commands also work for composite datatypes, ldgnomials and
matrices, whose coefficients are transformed in one stegtidnal function val-
ues of exact numbers and constants plkeremain unevaluated until tHat -
command is issued.

>> sqrt(2)

ans = 1.4142
>> sqrt(rat(2))
ans = sqrt(2)
>> float(ans)
ans = 1.4142

The exact datatype is useful especially for unstable prob)dike solving
systems of linear equations with ill-conditioned matrihelHilbert-matrix is an
extreme example:

>> det(hilb(20) * invhilb(20))

ans = 1 % correct

>> det(float(hilb(20)) * float(invhilb(20)))
ans = 1.6713E151 % slightly wrong

Imaginary numbers are marked with an immediately followingr j . This
will work even if the predefined variablésandj have been overwritten.

>> 2+3]
ans = 2+3i

2.2 Operators and Functions

The basic arithmetic operations are marked with the usumbsys ¢ - * /)

. Exponention is performed with the accent charactgr (Multiplication and
division precede addition and subtraction; any order ofuatéon can be forced
by parenthesis.

Exercise 1 (Numbers and Operators)

Calculate the following mathematical expressions:

3.23 14-2 4.5.10"%3:0.0000013
15— (38— 29) ' e

17.23-10*

1.12— 17.23104
: 17.23104
1122852

17.4(372.131.2)0.16

Solution:

>> 3.23 *(14-2"5)/(15-(373-2"3))
ans = 14.535

>> 4.5e-23/0.0000013

ans = 3.4615E-17

>> 17.47((3-2.1371.2)°0.16)

ans = 13.125
>> 17.23e4/(1.12-17.23e4/(1.12-17.23e4/1.12))
ans = 76919

In addition to these arithmetic operators Jasymca provgesators for com-
paring numbersq > >= <= == "=), and for boolean functions& | ~).
Logicaltrueis the number 1falseis 0.

>> 1+eps>1

ans = 1
>> 1+eps/2>1 % defines eps
ans = 0

>> A=1;B=1;C=1, % semikolon suppresses output.
>> I(A&B)|(B&C) == (C™=A)
ans = 1

The most common implemented functions are the squaresqd(X)), the
trigonometric functionsgin(x), cos(x), tan(x)) and inverses
(atan(x), atan2(y,x)), and the hyperbolic functionexp(x), log(x)).
A large number of additional functions are available, seeltt in chapter 4.
Some functions are specific to integers, and also work witktrary large num-

7

bers:primes(Z) expand< into primefactorsfactorial(Z) calculates the
factorial function. Modular division is provided ldivide and treated later in
the context of polynomials.

Example: Functions

>> log(sqrt(854)) % natural logarithm

ans = 3.375

>> 0.5 *log(854)

ans = 3.375

>> float(sin(pi/2)) % argument in radian

ans = 1

>> gammaln(1234) % log(gamma(X))
ans = 7547

>> primes(1000000000000000001)

ans = [101 9901 999999000001]

>> factorial(35)

ans = 1.0333E40

>> factorial(rat(35)) % to make it exact.

ans = 10333147966386144929666651337523200000000

2.3 Variables

Variables are declared by supplying a name and value in theefmame=value .
The name can be any charactersequence. With the exceptioa fifst character
it may also contain numbers. The value is any number or egjaes

>> xX=24+3i
X = 24+3i

Some variables are predefined (lige). The last previous result of a calcu-
lation is stored in the variablens . All variables are displayed by the command
who. Single variables can be deleted by entegtear variable

It is possible to define variables whose value is a functionthls case the
function’s name must be preceded by the chara$téo suppress evaluation.
These variables can be used like the function they standSar.example, who
dislikes the builtin functiomealpart(x) 's name can shorten it to the Matlab-
version:

>> real=%realpart
$realpart

>> real(24+3i)
ans = 24

Exercise 2 (Variables)

Convert several temperatures@20°C,30°C,50°C) from Celsius to Fahrenheit-sca

The formula for transformations to Fahrenheit-degreedsea
T/°F=9/5-T/°C+32

Use variables for the temperatures.
Solution:

>> TC=20

TC = 20

>> TF=9/5 * TC+32

TF = 68

>> TC=30

TC = 30

>> TF=9/5 *TC+32 % Repeat with arrow key
TF = 86

e.

Exercise 3 (Variables)

Calculate the skin surface of your body from heightnd weightW using DuBois’ for-
mula:
A = h%"25(cm) -WO42%(kg) - 71.84- 10~ 4(n?)

Use variable$ andWw.
Solution:

>> h=182; W=71,
>> A=h"0.725 *W"0.425 x71.84e-4
A = 1.9129

Exercise 4 (Variables)
Calculate some elements of the recursively defined sequence

1 3
= l = — e
Xo Xnt1 Z(Xn + Xn)
When does this sequence approach its lif@to within 2* eps ?
Solution:

>> x=1

x =1

>> x=1/2 = (x+3/x); x-sqrt(3) % n=
ans = 0.26795

>> x=1/2 = (x+3/x); x-sqrt(3) % n= 2
ans = 1.7949E-2

>> x=1/2 = (x+3/x); x-sqrt(3) % n= 3
ans = 9.205E-5

>> x=1/2 * (x+3/x); x-sqrt(3) % n= 4
ans = 2.4459E-9

>> x=1/2 * (x+3/x); x-sqrt(3) % n=5
ans = 0 % Bingo

10

2.4 \Vectors und Matrices (1)

These datatypes are either used for multidimensional tshjecfor simultaneous
calculations on large numbers of data, e.g. for statispicablems. In this chapter
we discuss this latter aspect. Linear algebra and the usgtbivcalculations are
treated in chapter 2.9.

Vectors are marked with square brackets. The elements taeedas comma-
separated list. The commas may be left if the elements carishigudshed in a
unique manner, which however fails in the second examplenbel

>> x=[1,-2,3,-4]

x=[1 -2 3 -4]

>> x=[1 - 2 3 -4] % Caution: 1-2=-1
x=[-1 3 -4]

Colon and the functiotinspace are used to define ranges of numbers as vec-
tors.

>> y=1:10 % 1 to 10, step 1
y=[1 2 3 4 5 6 7 8 9 10]
>> y=1:0.1:1.5 % 1 to 1.5, step 0.1

y=[1 11 12 13 14 15]
>> y=linspace(0,2,5) % 5 from 0 to 2.5, equidistant.
y=[0 05 1 15 2]

The number of elements in a vectois calculated with the functiolength(x)
individual elements are extracted by providing the inkldike x(k) . This index
k must be a number in the range 1 to (includitey)gth(x) . The colon oper-
ator plays a special role: Used as index, all elements of dlotov are returned.
Additionally, ranges of numbers can be used as index.

>> y(2) % single element

ans = 0.5

>> y(2) % magic colon

ans = [0 05 1 15 2]

>> y(2:3) % index between 2 and 3
ans = [0.5 1]

>> y(2:length(y)) % all from index 2

ans = [05 1 15 2]

>> y([1,3,4]) % indices 1,3 and 4

11

ans = [0 1 15]

>> y([1,3,4]) = 9 % insert
ans =[9 05 9 9 2]

>> y([1,3,4]) = [1,2,3] % insert
ans =[1 05 2 3 2]

Matrices are handled in a similar way, only with two indices fownumber
(first index) and columnnumber (second index). Rows areraggh by either a
semicolon or a linefeed during input.

>> M=[1:3 ; 4.6 ; 7:9]

M =
1 2 3
4 5 6
7 8 9
>> M([1 3],)
ans =
1 2 3
7 8 9
>> C=M<4
C =
1 1 1
0O 0 O
0O 0 O

The operators of chapter 2.2 may be applied to vectors andoestIf scalar,
per-element operation is desired, some operators () must be preceded by a
point to distinguish them from the quite different linedgebra versions of these
operations (see chapter 2.9). Further useful functionsangvector) and
prod(vector) which return the sum and product of the vectors elements.

12

Exercise 5 (Vectors)

Working with vectors: Calculate

k=n k=n) k=n 3
k k k
kZl kZl k=1
forn=10,n=100,n = 10000.

Solution:

>> n=10; k=1:n;
>> sum(k), sum(k. k), sum(k."3) % point!

ans = 55
ans = 385
ans = 3025

>> n=100; k=1:n;

>> sum(k), sum(k. *k), sum(k."3)
ans = 5050

ans = 3.3835E5

ans = 2.5503E7

>> n=10000; k=1:n;

>> sum(k), sum(k. k), sum(k."3)
ans = 5.0005E7

ans 3.3338E11

ans 2.5005E15

Exercise 6 (Vectors)

Transform the list of Celsiustemperature80°C, —29°C,...,80°C into Fahrenheitdg
grees. Use vectors.
Solution:

>> TC=-30:80;
>> TF=9/5 * TC+32
TF = [-22 -20.2 -184 -16.6 -14.8 -13 -11.2 -94 ..

13

2.5 Plotting

Data may be graphed using tht(x,y) -function, x and y being equalsized
vectors, which denote the coordinates of the datapointsetplbtted. A third
optional argumenplot(x,y,option) specifies plotoptions like colors and
symbols, see exercise 7ff. The graphic may then be decofaxeg title) and ex-
ported as encapsulated-postscript file for inclusion indesuments. This export
option is not available in the applet and midlet versionsasfyinca. Withhold
(or hold on) the graphic gets locked so that subsequent plotcommardbes
same window. Repeatirfgpld (or hold off) deletes the graphic.
Logarithmic and semilogarithmic plots are provided witk fanctiondoglog
linlog andloglin

Exercise 7 (Plotting)

1

Plot the functiony = in the rangex = 0.01 ... 100 linear and logarithmic.

) 1+2¢2
Solution:
>> x=0.01:0.01:100; y=1./(1+0.5 *X. *X); plot(x,y)
>> x=0.01:0.01:100; y=1./(1+0.5 *X. *X); loglog(x,y)

Exercise 8 (Plotting)

Display of Lissajous-figures: From the vectef:0.1:4 *pi; create the trigonometric
expressionx=sin(0.5 *t+1); undy=cos(1.5 =*t); . The plot x vs. y is called
Lissgjous-figure. Create different figures by variating the consténts1,1.5 in the
definition.

Partial solution:

>> t=0:0.1:4 *pi;
>> x=sin(0.5 *t+1);
>> y=cos(1.5 =t);
>> plot(x,y)

14

Exercise 9 (Plotting)

Calculate the first 100 elements of the sequences

~n-1_ n+1l n+(=1)"
Xn - n 1Xn - n ,Xn - n
Plot x, versusn using the commanglot(n, xn) . Variate the plotoptions (color
symbols).
Solution:

>> n=1:100;

>> x1=(n-1)./n; x2=(n+1)./n; x3=(n+(-1)."n)./n;
>> plot(n,x1) % Standard: blue, lines
>> hold

Current plot held.

>> plot(n,x2,’r") % Color: r,g,b,c,m,y,w.
>> plot(n,x3,'q")

A

15

Exercise 10 (Plotting)

Plot the datapoints of the following table usippt and colored symbols. Calculate the

linear regression usingolyfit

title and labels, and export the graphic to a file suitablarfolusion in a text document.

, and plot the regression line in the same graph. Add

x]0 1 2 3
y|-31 -07 18 41

4 5 6 7 8 9
6.2 89 11.3 135 16 183

Solution:

>> x=0:9;

>> y=[-3.1,-0.7,1.8,4.1,6.2,8.9,11.3,13.5,16,18.3];
>> plot(x,y,"+r") % Symbol: o,x,+, *
>> hold

Current plot held.

>> plot(x,polyval(polyfit(x,y,1),x)) % Regression

>> xlabel("x-Achse")
>> ylabel("y-Achse")
>> title("Beispielgraph”)

>> print("graph.eps”) % not Applet or Midlet!

Beispielgraph

15—

10—

y-Achse

16

2.6 Polynomials (1)

Jasymca can handle polynomials with symbolic variableghis chapter, how-
ever, we work with the Matlab/Octave/Scilab-approach ohgis/ectors as list
of polynomial coefficients: A polynomial of degreeis represented by a vec-
tor havingn+ 1 elements, the element with index 1 being the coefficienhef t
highest exponent in the polynomial. Wigloly(x) a normal polynomial is cre-
ated, whose zeros are the elements,giolyval(a,x) returns functionvalues
of the polynomial with coefficienta in the pointx, roots(a) calculates the
zeros, andgolyfit(x,y,n) calculates the coefficients of the polynomial of
degreen, whose graph passes through the points x ynd y. If their nuislb@rger
thann+ 1 a least square estimate is performed. The regressiorsealgxercise
8 was performed using this method.

Exercise 11

The roots of a 4th-degree polynomial ard, —2,2,4 and it intersects the y-axis at
(y = —64). Calculate its coefficients:
2 Solutions:

>> a=poly([-4,-2,2,4])
a=[1 0 -20 0 64]
>> a = -64/polyval(a,0) *a
a =
-1 0 20 O -64
>> a = polyfit([-4,-2,2,4,0],[0,0,0,0,-64],4)

-1 0 20 O -64

17

Exercise 12

On a grid withx, y-Koordinaten we have the following greyvalues of a digitahpe:

y\X 1 2 3 4
1 98 | 110 | 122 | 136
2 91| 112 | 131 | 141
3 73| 118 | 145| 190
4 43| 129 | 170 | 230

Which greyvalue do you expect at positian= 2,35,y = 2,74? Calculate the bicubjc
interpolation.
Solution:

>> 7=[98,110,122,136;

> 91,112,131,141;

> 73,118,145,190;

> 43,129,170,230];

>> j=1; p=polyfit(1:4,2(i,:),3); z(i)=polyval(p,2.35);
>> i=2; p=polyfit(1:4,Z(i,:),3); z(i)=polyval(p,2.35);
>> |=3; p=polyfit(1:4,2(i,:),3); z(i)=polyval(p,2.35);
>> |=4; p=polyfit(1:4,2(i,:),3); z(i)=polyval(p,2.35);
>> p=polyfit(1:4,z,3); zp=polyval(p,2.74)

zp = 124.82

2.7 Files

Reading and writing files is simplest with the Jasymca appibn, since file ac-
cess by applets and midlets is often restricted due to sgaugasures. Menu-
options are provided for working with files:

File : Open Script

A scriptfile is read into Jasymca. The scriptfile must be ptait, which can
be generated with common texteditors (e.g. Notepad, Text@ler, KWrite for
the platforms windows, macos, linux). The content of thepsfile is treated as
if it were entered in the textinputfield of Jasymca, i.e. itshbe a list of valid
commands.

18

This can be used to read in data from a data aquisition systemnalysis,
or to load user programs (see chapter 2.8). Quite usefuisaseof constants or
material data which are often required for exercises.

It is possible to load files from the textinputfield without mwe In this case
the file must end with “.m” (e.g. “data.m”), and reside witlasymcas searchpath
(see below). Entering the filenaméthout the ending “.m” (in this exampldata)
loads the data.

File : Save History

A protocol of the running session is created with all entirethe command his-
tory. This can be loaded in subsequent sessions using “Ogrgit’S

File : Add Path

The search path specifies the directories which Jasymcah&sawhen loading
files. The commangath displays the list of these directories. No subdirectories
are entered. If a directory is to be added to the searchgasicdn be done either
using this menuoption, or the commaaddpath(’path’) . The namepath
must be quoted.

>> path

m:.

>> addpath(’/Users/dersch/jasymca’)
>> path

/Users/dersch/jasymca:m..

2.8 Programming
2.8.1 Functions

Programs can be created and run interactively. Programanimgction is demon-
strated in the following example of a functigtwo(x) , which multiplies its
argument by 2. After the definition it can be used like any p#@asymca function.

>> function y=ttwo(x) y=2 *X; end
>> ttwo(3.123)
ans = 6.246

19

Following the keywordunction is the prototype with a return variabje This
replaces the construstturn y of other programming languages.

If functions are to be reused later, they should be writteatxtfile and saved
somewhere in Jasymcas searchpath. The filename must benitteofuname
extended by “.m”, in the present exampt&o.m . In subsequent sessions the
functionttwo can be used without separately loading the file. Severallest
functions of Jasymca are provided using this mechanism.

2.8.2 Branches

if x A end

Depending on the conditior one or several statememfsare executed. The
conditionx must be an arbitrary expression, which evaluates to eitloerl0 The
false-case (i.e. x=0) can lead to another braBch

if x A else B end

As an example the Heavyside funkcion:

>> function y=H(x)

> if (x>=0)
> y=1;
> else

> y=0;
> end

> end

>> H(-2)
y=20

>> H(0)
y=1

2.8.3 Loops

Loops with conditiork and statement(\:
while x A end
Thewhile -loop is repeated untd becomes falsed)).

>> x=1;y=1,

>> while(x<10) y=x+y; x++; end
>> y

y = 46

20

Loops with counter and statement(2Y:
for z = vector A end
In thefor -loop the counter is formally initialized by\sector . In each execu-
tion of the loop the counter takes on the value of the next etgrofvector

>> x=1;y=1,;

>> for(x=1:0.1:100) y=x"2+y; end
>> y

y = 3.3383E6

2.8.4 Jumps

return, continue, break

A function may be prematurely left usimgturn . continue andbreak are
used in loopscontinue jumps back to the start of the loop, and begins another
cycle.break permanently leaves the loop.

>> x=1;
>> while(1)
> if(x>1000)

> break;
> end

> X++:

> end

>> X

X = 1001

21

2.9 Vectors and Matrices (2)

Several standardmatrices are created by means of funatibnsut specifying
individual elementsones(n,m) , zeros(n,m) ,rand(n,m) return matrices
with elements 1, 0 or random numbers between 0 argly#(n,m) has diago-
nalelements 1, else 0, ahdb(n) creates the n-th degree Hilbert-matrix.

>> A=rand(1,3)

A =

0.33138 0.94928 0.56824
>> B=hilb(4)
B =

1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
/4 1/5 1/6 1/7

The following functions are provided for matrix calculai® diag(x) (extracts
diagonal elementsylet(x) (determinante)gig(x) (eigenvalues)inv(x)
(inverse),pinv(x) (pseudoinverse). The adjunct matrix is created using the
operator .

>> det(hilb(4))
ans = 1/6048000
>> M=[2 3 1; 445,209 3

>> M
ans =
2 4 2
3 4 9
1 5 3
>> eig(M)
ans = [11.531 -3.593 1.062]
>> inv(M)
ans =
0.75 0 -0.25
4.5455E-2 -9.0909E-2 0.13636
-0.63636 0.27273 9.0909E-2

The nontrivial functions are all based on the LU-decompasjtwhich is also
accessible as a function cdli(x) . It has 2 or 3 return values, therefor the left
side of the equation must provide multiple variables, seargte below:

22

>> M=[2 3 1;445; 29 3
>> [l,u,p]=lu(M) % 2 or 3 return values
| = % left triangular matrix (perm.)

0.5 0.14286 1
1 0 0
0.5 1 0
u = % right upper triangular matrix
4 4 5
0 7 0.5
0 0 -1.5714
p = % permutation matrix
0 0 1
1 0 O
0 1 O

Without preceding point the arithmetic operators funcasmatrix operators, e.g.
* corresponds to matrix and vector multiplication.

>> x=[2,1,4]; y=[3,5,6];

>> X, xy % with point
ans = [6 5 24]

>> Xy % without point
ans = 35

If one of the arguments is a scalar datatype, the operati@pesated for each
element of the other argument:

>> x=[2,1,4];
>> x+3
ans =[5 4 7]

Matrix division corresponds to multiplication by the pseutverse. Using the
operator\ leads to left-division, which can be used to solve systemknefr
equations:

>> M=[2 3 1;445; 29 3]
>> b=[0;3;1];
>> x=M\b % solution of M *x = b
X =
-0.25

23

-0.13636

0.90909
>> Mk X % control
ans =

0

3

1

Systems of linear equations can (and should) be solvedtl§ireith the function
linsolve(A,b) which will be discussed in chapter 2.13.1.

2.9.1 LAPACK

The application jasymca (not the applet or midlet) contdiARPACK [9], the
Java-port of the LAPACK [10]-routines with extended andt&eglgorithms for
matrix calculations. However, these are limited to magiagth real coefficients
in floating point format. The LAPACK routines are accessedhsy following
functions:

svd(A) Singular value decomposition 8f(1 or 3 returnvalues).
>> A=[2 3 1;445; 29 3]

>> svd(A)
ans = [12.263 3.697 0.9705]

gr(A) QR-decomposition oA (2 returnvalues).

>> A=[2 3 1; 4 45; 29 3]
>> [q,r]=ar(A)

q =
-0.40825 -5.3149E-2 -0.91132
-0.8165 -0.4252 0.39057
-0.40825 0.90354 0.13019
r =
-4.899 -8.165 -5.7155
0 6.2716 0.53149
0 0 1.4321

linsolve2(A, b) SolvesA-x=Db (1 returnvalue). Example in chapter 2.13.1.

24

linlstsq(A, b) SolvesA-x = b, overdetermined (1 return value). For an example
see insert “Comparison of LAPACK and Jasymca Routines”.

eigen@) Eigenvalues oA (1 returnvalue).
>> A=[2 31, 445; 29 3]

>> eigen(A)
ans = [11.531 1.062 -3.593]

25

Comparison of LAPACK and Jasymca Routines

We calculate the 4-th degree regression polynomial forahevwing x,y-data:

>> x=[1:6],y=x+1
x=[1 2 3 4 5 6]
y=[2 3 4 5 6 7]
>> polyfit(x,y,4)
p =
5.1958E-14 -9.6634E-13 -2.4727E-12 1 1

The coefficientgp(1),p(2),p(3) should vanish sinc& andy represent a perfe
straight line. This is an unstable problem, and it can bdyeastended to make Jasym
completely fail. In our second attempt we use the Lapackimelinlstsq

>> x=[1:6],y=x+1;
>> |=length(x);n=4;
>> X=(x' *ones(1,n+1))."(ones(l,1) *(n:-1:0))
>> linlstsq(X,y")
ans =
-1.6288E-18
-7.0249E-17
1.0653E-15
1
1

\

\

The coefficientp(1),p(2),p(3) are now significantly smaller. This particular prg
lem can be solved exactly using Jasymca-routines and exaudbers, which avoids ar|
rounding errors:

>> x=rat([1:6]);y=x+1;
>> polyfit(x,y,4)
p =

0O 0 0 1 1

Ct

Db-
y

26

2.10 Symbolic Variables

In contrast to the examples Octave and Matlab, Jasymcaratésgnumeric and
symbolic datatypes at the core of the program; symbolic nsatlot treated as an
add-on. This means that with few exceptions most operatioogpt any mixture
of numeric and symbolic arguments using the same commamdsoammandsyn-
tax.

Symbolic variables should not be confused with variabledissussed until
now. These latter variables serve as address for an objearnmory (the “environ-
ment”), while symbolic variables are algebraic objectslogirtown. That means
if X is a conventional variable, enteringin the textinputfield makes Jasymca
search in the environment for the corresponding objectclvttien replaces. If
howeverx is a symbolic variable, the same action will lead to the ¢omadf a
first-degree polynomial with variableand coefficients 1 and 0.

In Octave-mode, each symbolic varialdlanust be declared as symbolic by
enteringsyms x before using it. The commardear x deletes the symbolic
(actually any) variable.

>> x=3; % nonsymbolic variable
>> xX"2+3-2 *sin(x) % placeholder for '3’
ans = 11.718

>> syms X % symbolic variable

>> X"2+3-2 *sin(x) % create function
ans = -2 *sin(x)+(x"2+3)

2.11 Polynomials (2) and Rational Functions

We have learnt that polynomials may be represented by thenettheir coeffi-
cient. Using a symbolic variabbe we will now create a symbolic polynomigl
Conversely, we can extract the coefficients from a symbaligmpmial using the
functioncoeff(p, x, exponent) . The commanadliroots(p) returns
the zeros.

>> a=[3 2 5 7 4], % coefficients

>> syms X

>> y=polyval(a,x) % symbolic polynomial
y = 3*X4+42 *X'3+5 *X"2+7 *x+4

>> coeff(y,x,3) % get one coefficient
ans = 2

27

>> b=coeff(y,x,4:-1:0) % or all at once

b=[3 2 5 7 4]

>> allroots(y) % same as roots(a)

ans = [0.363-1.374i 0.363+1.374i
-0.697-0.418i -0.697+0.418i]

Up to this point there is little advantage of using symbohdcalations, it is
just another way of specifying a problem. The main benefityofilsolic calcu-
lations emerges when we are dealing with more than one syenmiable, or,
meaning essentially the same, when our polynomial has mstaot coefficients.
This case can be treated efficiently only with symbolic Malga. Notice in the
example below how the polynomial y is automatically mulggl through, and
brought into a canonical form. In this form the symbolic edtes are sorted
alphabetically, i.e.z is main variable compared to. The coefficients can be
calculated for each variable separately.

>> syms X,z

>> y=(x-3) *(x-1) *(z-2) =*(z+1)

y = (X'2-4 *x+3) *Z2°2+(-X"2+4 *X-3) *z+(-2 *X2+8 *X-6)
>> coeff(y,x,2)

ans = z2°2-z-2

>> coeff(y,z,2)

ans = X'2-4 xx+3

2.11.1 Roots

The commandllroots functions with variable coefficients also, but only,
if the polynomials degree in the main variable is smallemti3a or it is bi-
quadratic. If roots of other variables are searched, one should use the more
generakolve(p,x) , which will be discussed in more detail later.

>> syms X,z

>> y = X%2"2-3 xX*Zz+(2 *x+1);

>> allroots(y)

ans = [sqrt((1/4 *X-1)/x)+3/2 -sqrt((1/4 *X-1)/X)+3/2]
>> solve(y,x)

ans = -1/(z2°2-3 *z+2)

28

2.11.2 Squarefree Decomposition

The decomposition op in linear, quadratic, cubic etc factors is accomplished
by sqfr(p) . Returned is a vector of factors sorted in ascending ordéneof
exponents.

>> syms X
>> y=(x-1)"3 *(x-2)"2 *(X-3) =*(x-4)

y = X'7-14 *X6+80 *XxX'5-242 *xX4+419 *X"3-416 *X2+220 *x-48
>> z=sqfr(y)

Z = [X2-7 *x+12 x-2 Xx-1]

2.11.3 Division, Greatest Common Denominator

The division of two polynomialg andq in one polynomial and remainder is
calculated usingivide(p,q) . If the polynomials have more than one variable,
an optional variable can be specified, which will be used fastbn. gcd(p,q)
returns the greatest common denominator of two expressnih functions also
work with numbers as arguments.

>> divide(122344,7623)

ans = [16 376]

>> divide(2+i,3+2 *1)

ans = [1/2 1/2]

>> syms X,z

>> divide(x"3 *z-1,X *Z-X,X)
ans = [X2 =z/(z-1) -1]
>> divide(x"3 *z-1,X *Z-X,2)
ans = [X2 XxX3-1]

>> gcd(32897397,24552502)

ans = 377
>> ged(z *X5-2,X°2-2 *x+1)
ans = x-1

2.11.4 Real- and Imaginary Part

realpart(expression) and imagpart(expression) is used to de-
compose complex expressions. Symbolic variables in thegeegsions are as-
sumed to be real-valued.

29

>> syms X

>> y=(3+i *x)/(2-i *X)
y = (-x+3i)/(x+2i)

>> realpart(y)

ans = (-xX"2+6)/(x"2+4)
>> imagpart(y)

ans = 5x*x/(x"2+4)

2.12 Symbolic Transformations
2.12.1 Substitution

Parts of an expression may be replaced by other expressmgsubst(a,b,c)
a is substituted fob in c. This is a powerful function with many uses.

First, it may be used to insert numbers for variables, in K@gple 3 forx in
der formula 2/xX- e,

>> syms X

>> a=2=*sqrt(x) *exp(-x"2);
>> subst(3,x,a)

ans = 4.275E-4

Second, one can replace a symbolic variable by a complex {Ene expres-
sion is automatically updated to the canonical format. Eftilowing example
22+ 2 isinserted fox in X3 +2x% +x+7.

>> syms X,z

>> p=X"3+2 * X 2+X+7,;

>> subst(z"3+2,x,p)

ans = z'9+8 *z7'6+21 »z"3+25

Finally, the termb itself may be a complex expression (in the examgle-

1). Jasymca then tries to identify this expressior ifexample: \/ZZ'ZX%). This
is accomplished by solving the equatian= b for the symbolic variable irb
(example:2), and inserting the solution ia. This does not always succeed, or

there may be several solutions, which are returned as arvecto

>> syms XY,z
>> c=x"3 *z/sqrt(z"2+1);
>> d=subst(y,z"2+1,c)

30

d = [X3 =sqgrt(y-1)/sqrt(sqrt(y-1)"2+1)
-X"3 *sqrt(y-1)/sqgrt(sqrt(y-1)"2+1)]
>> d=trigrat(d)
d = [X3 =sqrt(y-1)/sqrt(y)
-X"3 *sqrt(y-1)/sqrt(y)]

2.12.2 Simplifying and Collecting Expressions

The functiontrigrat ~ (expression) applies a series of algorithms égpression.
e All numbers are transformed to exact format.

Trigonometric functions are expanded to complex expoaémti

Addition theorems for the exponentials are applied.

Square roots are calculated and collected.

Complex exponentials are backtransformed to trigonom#trictions.
It is often required to applffoat(expression) to the final result.

>> syms X

>> trigrat(sin(x)"2+cos(x)"2)

ans = 1

>> b=sin(x)"2+sin(x+2 * pi/3)"2+sin(x+4 * pil3)°2;
>> trigrat(b)

ans = 3/2

>> trigrat(i/2 *log(x+i = pi))

ans = 1/4 i xlog(x 2+pi"2)+(1/2 * atan(x/pi)-1/4 * pi)

>> trigrat(sin((x+y)/2) * cos((x-y)/2))

ans = 1/2 =sin(y)+1/2 *sin(x)

>> trigrat(sqrt(4 * Y 2+4 x Xxy-4 *y+X"2-2 *X+1))

ans = y+(1/2 *x-1/2)

trigexpand(expression) expands trigonometric expressions to complex

exponentials. It is the first step of the functiigrat above.

>> syms X

>> trigexp(i *tan(i *Xx))

ans = (-exp(2 =*x)+1l)/(exp(2 *x)+1)

>> trigexp(atan(1-x"2))

ans = -1/2 *i *log((-x"2+(1-1 *0))/(X"2+(-1-1 *1)))

31

2.13 Equations
2.13.1 Systems of Linear Equations

Solving systems of linear equations is accomplished beeitie function
linsolve(A,b) (all versions of Jasymca), insolve2(A,b) (LAPACK,
not in applet and midlet). In both cases A is the quadratiaimat the system of
equations, and b a (row or column) vector representing tite¢-hand-side of the
equations. The equations may be writterAag = b and we solve foe.

>> A=[2 3 1,4 45; 29 3]
>> pb=[0;3;1];
>> linsolve(A,b)
ans =

-0.25

-0.13636

0.90909
>> linsolve2(A,b) % not Applet or Midlet
ans =

-0.25

-0.13636

0.90909

For large numeric matrices one should use the LAPACK-vargiavailable. The
Jasymca version can also handle matrices containing exagtbolic elements.
To avoid rounding errors in these cases it is advisable t&with exact numbers
if possible:

>> Syms X,y

>> A=[x,1,-2,-2,0;1 2 3 *y 45122019160 -10010]
A =

X 1 -2 -2 0 % symbolic element

1 2 3xy 4 5 % symbolic element

1 2 2 0 1

9 1 6 0 -1

0 0 1 0 0

> b =[1-2 3 2 4]
>> trigrat(linsolve(rat(A), b))

ans =

32

(-6 *y-13/2)/(x+8)

(20 *y+(-9 *x-151/3))/(x+8)

4

((-3 *x+10) *y+(-49/4 *x-367/6))/(x+8)
(-34 *y+(13 *x+403/6))/(x+8)

2.13.2 Nonlinear Equations

“Equation” in the following means the equatiempression = 0 . Equations
are solved for a symbolic variabkeby the functiorsolve(expression, Xx)

If expression is a quotient, themominator = 0 is solved. Jasymca uses
the following strategy to solve equations:

1. First, all occurances of the variabtein expression are counted, both
as free variable and embedded inside functions. Example? -Isin(x) +
2x% —/x— 1 x occurs three times: as free variable, in(gjrand iny/x— 1.

2. If this count is one, then we are dealing with a polynomigagpn, which
is solved for the polynomial’s main variable, e.g. This works always,
if the polynomial’'s degree is 2 or of it is biquadratic, otivese only, if
the coefficients are constant. In the next step the solus@olved for the
desired variable. As an example: Jasymca has to solvésin— 2 sin(x) +
1 =0 for x. It first solvesz? —2z+1 = 0 for z and then sifx) = z for x.
Examples with free variables:

>> syms Xx,b

>> solve(x"2-1,x)

ans = [1 -1]

>> solve(x2-2 *xxb+b"2,x)
ans = b

An example with functionvariable¢p(j - x)):
>> syms X
>> float(solve(sin(x)"2+2 * c0S(x)-0.5,x))

ans = [1.438i -1.438i -1.7975 1.7975]

3. If count is 2, only one case is further considered: Theatdei occurs free
and inside squareroot. This squareroot is then isolateddbation squared

33

and solved. This case leads to additional false solutiohgwhave to be
sorted out manually.

>> syms X
>> y=X"2+3 *X-17 *sqgrt(3 *x"2+12);
>> solve(y,x)
ans = [-32.501 26.528
-1.3931E-2-2.0055i -1.3931E-2+2.0055i]

4. In all other cases Jasymca gives up.

2.13.3 Systems of Nonlinear Equations

Coupled systems of equations can be solved by the function
algsys([expressions],[symbolic variables]) . First, all linear
equations are solved using the Gauss-method, then eacticggisafed through
solve() and the solution used to eliminate one variable in all otkpressions.
The equations are treated in the order they are supplied.méthod only works
for simple systems. The solution is provided as vector ofitsmhvectors, each
individual solution in as linear factor: In the first examplelow there is one so-
lution with xs=-2/3, a2=3/4, a0=2, al=0 , the second example has two
solutions.

>> syms xs,a0,al,a2
>> algsys([2-a0,al-0,a2 *Xs"2+al *xs+a0-3-xs,
> 2+ a2*xs+al+l],[a2,al,a0,xs])
ans = [[xs+2/3 a2-3/4 a0-2 al]|
>> syms a,Xs
>> algsys(l[a *xs+3*a-(3-xs"2),a+2 * XS],[a,Xs])
ans = [[-sgrt(6)+(xs+3) 2 * sqrt(6)+(a-6) |
[sqrt(6)+(xs+3) -2 *sqrt(6)+(a-6)]]
>> float(ans)
ans = [[xs+0.55051 a-1.101] [xs+5.4495 a-10.899]

2.14 Calculus
2.14.1 Differentiation

diff(function,x) differentiatesfunction with respect to the symbolic
variablex. The main variable ofunction is used ifx is not provided. Func-

34

tions defined by user programs can often be handled as well.

>> syms a,X

>> diffla *x73)

ans = 3xaxXx2

>> diffla *x73,a)

ans = X3

>> diff(3 *sqrt(exp(x)+2),x)
ans = 1.5 xexp(x)/sqrt(exp(x)+2)

>> diff(sin(x)) % no variable specified

ans = 1 % use z=sin(x) as variable
>> diff(sin(x),x) % more reasonable

ans = cos(x)

>> function y=ttwo(x) y=2 *X; end

>> diff(ttwo(sin(x)),x)
ans = 2 *cos(x)

2.14.2 Taylorpolynomial

taylor(function, x, x0, n) calculates then-th Taylorpolynomial in
the symbolic variable at the pointxO.

>> syms X

>> taylor(log(x),x,1,1)

ans = x-1

>> rat(taylor(exp(x),x,0,6))

ans = 1/720 *x6+1/120 *X'5+1/24 *X4+1/6 *X'3+1/2 *X 2+x+1
>> float(taylor(x"3 *sin(2 * x+pi/4),x,pi/8,2))

ans = 1.057 *x"2-0.36751 *x+4.1881E-2

2.14.3 Indefinite Integral

integrate(function, x) integrates expressidnction with respect
to the symbolic variabl&. Jasymca uses the following strategy:

1. Integrals of builtin-functions and all polynomials ameyided:

>> syms X
>> integrate(x"2+x-3,X)

35

ans = 0.33333 *x"3+0.5 *x"2-3 *X
>> integrate(sin(x),x)
ans = -cos(x)

. If function s rational (i.e. quotient of two polynomials, whose coeffi-
cients do not depend of)) we use the standard approach: Separate a poly-
nomial part, then separate a square free part using Hordwitgmethod,

and finally integrate the rest using partial fractions. Thalfterms are col-
lected to avoid complex expressions.

>> syms X

>> y=(X"3+2 * X 2-x+1)/((x+i) *(X-1) *(X+3))
y = (X342 *x"2-x+1)/(x"3+3 * X 2+X+3)

>> integrate(y,X)

ans = -1/4 =*log(x"2+1)+(-1/2 * log(x+3)+(-1/2 * atan(x)+x))
>> diff(ans,x) % control

ans = (X"3+2 *Xx"2-x+1)/(x"3+3 * X 2+X+3)

. Expressions of typg(f (x)) - f'(x) and% are detected:
>> syms X

>> integrate(x *exp(-2 *X'2),X)

ans = -0.25 =*exp(-2 *x"2)

>> integrate(exp(x)/(3+exp(x)),X)

ans = log(exp(x)+3)

. Substitutions of typéa- x+ b) are applied:

>> syms X
>> integrate(3 *sin(2 *x-4),X)
ans = -1.5 =*cos(2 *x-4)

. Productgolynomial (x) - f (x) are fed through partial integration. This solves
all cases wheré is one ofexp, sin, cos, log, atan.

>> syms X

>> integrate(x"3 *exp(-2 *X),X)

ans = (-0.5 *x"3-0.75 *x"2-0.75 *x-0.375) =*exp(-2 *X)
>> integrate(x 2 * l0og(x),x)

ans = 0.33333 *x"3 *log(x)-0.11111 *X"3

36

6. All trig and exp-functions are normalized. This solvey a&xpression,
which is the product of any number and any type of exponessiadl trigono-
metric functions, and some cases of rational expressiotrsgefand exp-

functions

>> syms X

>> integrate(sin(x) *COS(3 *X)"2,X)

ans = -3.5714E-2 =*cos(7 *x)+(5.0E-2 =*cos(5 *x)-0.5 =*cos(x))
>> integrate(1/(sin(3 *X)+1),X)

ans = -2/3 =*cos(3/2 =x)/(sin(3/2 *X)+c0s(3/2 *X))
7. The special cas¢ax? + bx+ c is implemented:

>> syms X
>> integrate(sqrt(x"2-1),x)
ans = 0.5 =x=*sqrt(x"2-1)-0.5 *log(2 *sqrt(x"2-1)+2 * X)

8. Clever substitutions may be supplied manually throsgbst() . If all
fails, integrate numerically usinguad or romberg .

The symbolic variable may be omitted if it is the main varebfexpression
Integrations can be quickly verified usiddf() on the result.

2.14.4 Numerical Integration

Two routines are supplied for numerical integration, whach both not very so-
phisticated. quad(’expression’,ll,ul) is modelled after the Octave/-
Matlab integration function, but much simpler. Simpson&thod is applied with
a fixed number of nodes. This function uses the “eval’-metfader than sym-
bolic variables. The function has to be supplied as quotathstand must be com-
patible with vector arguments. Finally, the variablenamestibex. romberg
uses symbolic function definitions, and a symbolic varidids to be supplied.
The maximum number of iterations is set by the variablmbergit (default
11) and accuracy bsombergtol (default: 10°%).

>> quad(’exp(-x."2)’,0,5)

s = 0.88623

>> syms X

>> romberg(exp(-x"2),x,0,5)
ans = 0.88623

37

2.14.5 Differential Equations

ode(expression,y,x) solves the linear first-order differential equatipr-
f(X)-y+9g(x). expression is the complete right-hand-side of the equation,
andy are symbolic variables. Free constants in the solution an&ealC.

>> ode(X,Y,X)

ans = 0.5 =x2+C

>> syms Kk

>> ode(-k *y,y,x)

ans = Crexp(-k *x)

>> ode(y *tan(x)+cos(x),y,X)

ans = (0.5 =cos(x) =*sin(x)+(0.5 * X+C))/cos(x)

3 Maxima-Mode

The userinterface can be switched to Maxima-mode duringhaing session by
selecting the menuoptioRun - Maxima Mode and back to Octave-mode by se-
lecting Run - Octave Mode. All variables keep their values; they can be cleared
if required by clickingRun - Clear Environment. Normally Jasymca starts up in
Octave-mode; see chapter 5 for instructions on how to spairt Maxima-mode.

Not only do the two user-interfaces differ in grammar andaeties regarding
some operators and functions (see chapter 4 for an overviewjaxima-mode,
symbolic variables need not be declared as sucdyhys. Jasymca automatically
creates symbolic variables for each unknown characteresegu Return values
are automatically assigned to variables namhkd2,d3,.. , and remain acces-
sible throughout the session. These two features make Mawiode favourable
for work with symbolic expressions, since few variableschieebe declared. It is
less suitable for large amounts of data since each inteateegisult is saved, and
fills up memory.

Some random examples follow. Commands in Maxima-mode neisob-
cluded with a semicolon and may extend beyond several ligeditting “return”
without the semicolon leaves Jasymca waiting for more input

cl) [2,3,4]+[4,5,6]; % semicolon!

di=[6 8 10] % automatic variable dl1
(c2) d1[2] =*d1[3]; % index in brackets

d2 = 80

38

(€3) X243 =y *x-2; % automatic symbolic vars

d3 = -x *y+(X"2+5) % equations are differences
(c4) choose(n,k):=n!/((n-k)! *K!); % defining functions
choose
(c5) sum(1/k"2,k,1,1000);% 2. version of sum
d4 = 1.6439
(c6) allroots((x-1)"3 *(X-2)"2 *(X-3) *(x-4));

ds =04 3 2 2 1 1 1]

(c7) allroots(x"2+1);
dé = [1 *i -1 =i]

c8) a:x+2-y, % assignment with 7’
a = -y+(x+2)

Working with m-files is not supported, therefor all funct®oloaded by this
mechanism do not work in Maxima-mode. Working with vectonsl anatri-
ces is also less comfortable: While the builtin functionstédminante, inverse,
LAPACK-functions, etc) are available, the conveniant noehfor indexing, ex-
traction and insertion (colon operator) are not supported.

Working with files is accomplished using theadfile und save - func-
tions, or the menu-fileoptions.

39

4 Reference

4.1 General

Textinputis concluded with lineend (linefeed or carriaggirn character) in Octave-
mode, and semicolon together with lineend in Maxima-modee @xtinput may
consist of several statements separated by commas or densicoln Octave-
mode the concluding character determines, whether the em®soutput is dis-
played in the textconsole (not with semicolon). Commenésraarked in both
modes by the charactébor #; the respective line is ignored starting at this let-
ter. Variable names are case-sensitive, not, however,ahees of builtin func-
tions. Long calculations and infinite loops in programs canrterrupted using
the menu-optiorirun - Interrupt or by typingCtrl-c . This does not work, how-
ever, with builtin functions.

The following list summarizes how argument data types indhbsequent
reference tables are characterized.

| Example | Font | Description |
long typewriter constant literal text
name slanted textstring, always quoted (single ’ or double ")
var italic algebraic expression, with or without symba|s,

scalar, vector, matrix.

vector italic vector, numeric or symbolic (except Lapack)
matrix italic matrix, numeric or symbolic (except Lapack)
sym italic symbolic variable
COUNT small capitals| integer, ofter> 0 required.

4.2 Commands

Commands are used for setting modes and options. In combréshctions, ar-
guments my be supplied without parenthesis. Only one cordrpantextinput is
allowed.

40

| Name | Option | Description | Mod | Ref |
format short displayformat for floating{ M,O
long point numbers: 5 digits,
BASE COUNT all digits or in BASE with
COuUNT digits.
syms sym [,symp,...] | declaresymy,... as symbolicc O
variable.

clear varp [,varap,...] delete variablesarq, ... M,O
who display all variables M,O
path show searchpath M,O
addpath path add to searchpath M,0
hold lock/unlock graphic window | M,O
hold on lock graphic window M,O
hold off unlock graphic window M,O
4.3 Operators

4.3.1 Define
| Type | Example O-Mode | Example M-Mode
Numer -3.214e-12 -3.214e-12

Vector [1 2 3 4] [1,2,3,4]

Matrix [1 2 ; 3 4] matrix([1,2],[3,4])
Vectorelement, x(2) X[2]

Matrixelement| x(2,1) X[2,1]

Range 2:5

Variable x = 2.321 X : 2.321,;

4.3.2 Calculate

This table shows operators with one example each for Octende (O-mode) and
Maxima-mode (M-mode). Operations are executed accoraitigelir precedence
(prec), and, if these are equal, ander.

41

| Function | O-Mode | M-Mode | Prec| Order|
Addition X+y | X+y 4 | left-right
Subtraction X -y X -y 4 | left-right
Scalar Multiplication X .* Yy | X *Yy 3 | left-right
Vector/Matrix Multiplication X *y | X.V¥ 3 | left-right
Scalar Division X .y xly 3 | left-right
Matrix Division (right) xly 3 | left-right
Matrix Division (left) x\y 3 | left-right
Scalar Exponentiation X .y X"y 1| left-right
Vector/Matrix Exponentiation X"y X 'y 1| left-right
Range Xy:zZ 5 | left-right
Assignment X =z X 1y 10 | right-left
Assignment X += 2z 10 | right-left
Assignment X -= 2 10 | right-left
Assignment X I=z 10 | right-left
Assignment X *= Z 10 | right-left
Preincrement ++X ++X 10 | left-right
Predecrement --X --X 10 | left-right
Postincrement X++ X++ 10 | right-left
Postdecrement X-- X-- 10 | right-left
Adjunct X’ 1 | right-left
Factorial X! 1| left-right
4.3.3 Comparison and Logical Operators

| Function | O-Mode | M-Mode | Prec| Order|
Less X <y X <y 6 | left-right
Less or equal X <=y X <=y 6 | left-right
Larger X >y X >y 6 | left-right
Larger or equal X >y | X >y 6 | left-right
Equal X ==Yy | X ==Y 6 | left-right
Not equal X=y | X =y 6 | left-right
And X &Yy X &Yy 7 | left-right
Or X |y X |y 9 | left-right
Not "X "X 8 | left-right

42

4.4 Programming

Both modes provide similar constructs with different graanm

Oktave Mode

Branch if x==0 xp=1; end

if x==0 xp=1; else xp=2; end
Loop while x<17 x=x+1; end

for i=0:100 x=x+i; end
Jump return, continue, break
Function function y=ttwo(x) y=2 *X; end
Evaluate eval('x=24")
Textoutput printfCErgebnis=%f", X)
Errormessage| error(’Fehler’)

Maxima Mode

Branch if x==0 then (xp:1);

if x==0 then (xp:1) else (xp:2);
Loop while x<17 do (x:x+1);

for i:0 step 1 thru 100 do (X:x+i);
Jump return, continue, break
Function ttwo(x) = 2 *X;
Block block([x,y], x:1, y:1, z:z+x+y);
Textoutput | printfCErgebnis=%f", x);
Error error('Fehler’);

43

4.5 Functions

45.1 Scalar

Name(Arguments) |

Function

Mod | Ref |

float(var)
rat(var)
realpart(var)
imagpart(var)
abgvar)
sign(var)
conj(var)
angle(var)
cfs(var [,varT])

primes(VAR)

var as floating point number
var as exact number

realpart ofvar

imaginary part ofvar

absolute value ofar

sign ofvar

var conjugate complex

angle ofvar

continued fraction expansion ér with
accuracyarr

VAR decomposed into primes

M,O
M,O
M,O
M,O
M,O
M,O
M,O
M,O
M,O

M,O

44

45.2 Scalar Functions

Name(Arguments) \ Function

Mod | Ref |

sqrt(var)
exp(var)
log(var)
sinh(var)
cosh(var)
asinh(var)
acoshvar)
sech{var)
cschvar)
aseclfvar)
acschvar)
sin(var)
cogvar)
tan(var)
asin(var)
acogvar)
atan(var)
atan2(vari, vary)
seqvar)
csqvar)
asegvar)
acsd¢var)
factorial (N)
nchoosekN,K)
gammavar)
gammaln(var)

squareroot
exponential

natural logarithm
hyperbolic sine
hyperbolic cosine
hyperbolic areasine
hyperbolic areacosine
hyperbolic secans
hyperbolic cosecans
hyperbolic areasecans
hyperbolic areacosecans
sine (radian)

cosine (radian)
tangens (radian)
arcsine (radian)
arccosine (radian)
arctangens (radian)
arctangens (radian)
secans (radian)
cosecans (radian)
arcsecans (radian)
arccosecans (radian)
factorial N!

binomial coefficient(})
gammafunction
logarithm of gammafunction

45

45.3 Vectors and Matrices

Name(Arguments)

Function |

Mod | Ref |

linspacgvar,var,,COUNT)

length(vector)
zerodROWY,COLUMNS])
onegROWY,COLUMNS])
eyg ROWY,COLUMNS])
rand(ROWY,COLUMNS])
hilb (RANK)

invhilb (RANK)
sizgmatrix)

sum(var)

find(var)

max(var)
min(var)
diag(var,[OFFSET)

det(matrix)
eig(matrix)
inv(matrix)
pinv(matrix)
lu(matrix)
svd(matrix)

gr(matrix)
eigen(matrix)

vector with COUNT numbers
ranging fromvar to varo
number of elements ivector
matrix of zeros

matrix of ones

matrix with diagonal one
matrix of random numbers
Hilbertmatrix

Inverse Hilbertmatrix

number of rows and columns
if var is a vector: sum of ele
ments, ifvar is a matrix: sum of
columns.
indices of nonvanishing ele
ments

largest element inar

smallest element ivar

if var is a vector: matrix withvar
as diagonale, iar is matrix: di-
agonale as vector.
determinante

eigenvalues

inverse

pseudoinverse
LU-decomposition

O

M,O
M,O
M,O
M,O
M,O
M,O
O
M,O

- M,0

-M,0

M,O
M,O
M,O

M,O
M,O
M,O
M,O
M,O

singular value decompositionM,O

(Lapack)
QR-decomposition (Lapack)
eigenvalues (Lapack)

M,O
M,O

46

4.5.4 Polynomials

Name(Arguments)

Function | Mod | Ref |

poly(vector)

polyval(vector, var)

polyfit (vectory,vectory,N)

roots(vector)

coeff(var,sym,N)
divide(vary, vary)
gcd(vary, varo)
sqfr(var)
allroots(var)

coefficients of polynomial havy O
ing rootsvector
functionvalue of polynomia] O
with coefficientsvector in the
pointvar

fits N-th degree polynomial to O
data points having coordinates
vectory andvectory
roots of polynomial having cor M,O
efficientsvector
coefficient ofsym™ in var M,O

division % with remainder M,O
greatest common denominator M,O
squarefree decomposition M,O
roots M,0

4.5.5 Equations and Expressions

Name(Arguments)

Function | Mod | Ref |

subsi(vary,vary,var)
trigrat (var)

trigexp(var)

solvevar, Sym)

algsygq[vary, vary,...],[sym,
symy,...])

linsolve(matrix, vector)
linsolve2matrix, vector)

linlstsg(matrix, vector)

substitutevary for vary in var, M,O
trigonometric and other simpli- M,O
fications
trigonometric expansion M,0
solvesvar = 0 for Sym. M,O
solves the system of equaM,O
tionsvar; = O,var, = 0,... for
Symy, symp,

solvesmatrix-x = vector forx | M,O
solvesmatrix- x = vector for x | M,0O
(Lapack)
solvesmatrix- x = vector for x, | M,0O
overdetermined (Lapack)

47

45.6 Calculus

| Name(Arguments) | Function | Mod | Ref |
sum(var,sym, INITIAL, FI- zgxifr:irt‘?laj var M,O
NAL)
Isum(var ,sym,vector) > symevector Var M,O
diff (var[,sym]) gvva;n M,O
integrate(var[,sym)) J var (sym)dsym M,O
romberg(var ,sym, varg, f\)’g;’varfdsym M,O
varp)
quad(expr; var, varp) Jvar? €xprdx O
taylor (var ¢, sym, varp, N) N-th Taylorpolynomial of the M,O
functionvar ¢ with variablesym
in pointvar p.
odg(var, symy, symy) solves the linear differentigl M,O
equationy = f(x) -y + g(x).
var is the right-hand-side of this
equation.
fzero(exprvar g, vary) find function zero betweevar, O
andvary,
4.5.7 Plots
| Name(Arguments)| Function | Mod | Ref |
plot(x,y [,option]) Plot x versusy usingoption M,O
x andy are equalsized vectors.
option is a string, specifying color (one of
r,g,b,y,m,c,w,k) and symbol (one
of +, *,0,x). Default: blue lines.
loglog(x,y[,option]) | logarithmic plot M,O
linlog (x,y[,option]) semilogarithmic plot M,O
loglin(x,y[,option]) semilogarithmic plot M,O
print (nam@ write graphic in eps-file. M,0

48

5 Installation

Applet

The applet is automatically started when visiting the Jasyhomepage [8] with

a java-enabled (version 1.5) webbrowser, no installation required. To create a
local copy of the Jasymca homepage move the direcpplet of the distribu-
tion onto your computer, and click the fiedexEN.html (or open it in your
browser). Included is the online reference, the other linksdexEN.html are
empty.

Application

The application Jasymca includes the LAPACK routines alahal you to work
with files. Move the directonApplikation onto your computer. It contains
all data and programs required to run Jasymca. A currentore(s 1.5) of the
Java-Runtime is required and can be downloaded from Sun [I&Jymca may
also be installed on removeable media (usb-sticks, menadst and read-only
media (cd-rom).

To start the program try to double-click the program igasymca.jar in
Applikation . If this does not work, open a command window on your com-
puter, navigate to the directoApplikation and issue the command
java -jar jasymca.jar . Jasymca starts up in Maxima-mode by the com-
mand
java -jar jasymca.jar ui=Maxima

Upon startup Jasymca searches a file nad@symca.Octave.rc or
Jasymca.Maxima.rc depending on startup mode. If the environmental vari-
ableJASYMCA RG set on your system, Jasymca searches for a startup file unde
this name extended bpctave.rc or.Maxima.rc . This file may be used to
load often used constants or functions.

Midlet

The midlet version is mostly compatible with the applet utthg the plotting
function. The user interface is taken from my program FreathlE [2], and de-
tails may be looked up there.

The installation on mobile devices like cellphones or pdepetds on the
system. Required is a java installation providing the APLDC 1.1, MIDP 2.0,

49

JSR-75. Most current systems are either equipped with Javaan be installed
from the manufacturer. The Jasymca midlet consists of tagJdsymca.jar
andJasymca.jad , both in the directorMidlet . It can be installed over the
internet, or through a local connection (USB/Bluetoothfrom your PC. Please
consult the manual of your mobile device. Detailled indiiarts for installations
on Palm Tungsten E and Nokia 6230i are available here [3].

6 License

Jasymca is free and open software. you can redistributelibamodify it under
the terms of the GNU General Public License. The licenseisextailable in the
distribution and and can be downloaded from the homepage [8]

This document may only be copied for private purposes.

Jasymca uses modules and parts from other programs whittstadtogether
with their licenses in this chapter.

e The files Biginteger.java, Random.java, and MPN.java aghty modified
versions from the GNU-Classpath [14] project.

Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003,
2005 Free Software Foundation, Inc.

GNU Classpath is free software; you can
redistribute it and/or modify it under the terms

of the GNU General Public License as published by
the Free Software Foundation; either version 2, or
(at your option) any later version.

e The files JMath.java and SFun.java are derived from publicdes by Vi-
sual Numerics Inc [15].

Copyright (c) 1999 Visual Numerics Inc. All Rights
Reserved.

Permission to use, copy, modify, and distribute

this software is freely granted by Visual
Numerics, Inc., provided that the copyright notice

50

above and the following warranty disclaimer are
preserved in human readable form.

EPS Graphics Library:

Copyright (c) 2006-2007, Thomas Abeel Project:
http://sourceforge.net/projects/epsgraphics/ The

EPS Graphics Library is free software; you can
redistribute it and/or modify it under the terms

of the GNU General Public License as published by
the Free Software Foundation; either version 2 of
the License, or (at your option) any later

version.

Pzeros.java:

derived from pzeros.f
<http://netlib.org/numeralgo/nal0>

All the software contained in this library

is protected by copyright. Permission to use,
copy, modify, and distribute this software for
purpose without fee is hereby granted, provided
that this entire notice is included in all copies

of any software which is or includes a copy or
modification of this software and in all copies

of the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT
ANY EXPRESS OR IMPLIED WARRANTY. IN NO EVENT,
NEITHER THE AUTHORS, NOR THE PUBLISHER, NOR ANY
MEMBER OF THE EDITORIAL BOARD OF THE JOURNAL
"NUMERICAL ALGORITHMS", NOR ITS EDITOR-IN-CHIEF,

BE LIABLE FOR ANY ERROR IN THE SOFTWARE, ANY
MISUSE OF IT OR ANY DAMAGE ARISING OUT OF ITS
USE. THE ENTIRE RISK OF USING THE SOFTWARE LIES
WITH THE PARTY DOING SO.

51

ANY USE OF THE SOFTWARE CONSTITUTES ACCEPTANCE
OF THE TERMS OF THE ABOVE STATEMENT.

AUTHOR:

DARIO ANDREA BINI
UNIVERSITY OF PISA, ITALY
E-MAIL: bini@dm.unipi.it

REFERENCE:

- NUMERICAL COMPUTATION OF POLYNOMIAL
ZEROS BY MEANS OF ABERTH'S METHOD
NUMERICAL ALGORITHMS, 13 (1996),

PP. 179-200

SOFTWARE REVISION DATE:

JUNE, 1996

e BLAS, LAPACK und JLAPACK:

Copyright (c) 1992-2008 The University of
Tennessee. All rights reserved.

Redistribution and use in source and binary forms,
with or without modification, are permitted
provided that the following conditions are met:

- Redistributions of source code must retain the
above copyright notice, this list of conditions
and the following disclaimer.

- Redistributions in binary form must reproduce
the above copyright notice, this list of

conditions and the following disclaimer listed in
this license in the documentation and/or other

52

materials provided with the distribution.

- Neither the name of the copyright holders nor
the names of its contributors may be used to
endorse or promote products derived from this
software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

References
[1] www.hs-furtwangen.de/ dersch
[2] www.hs-furtwangen.de/ dersch/FnattLabME/FnattL&pdf
[3] www.hs-furtwangen.de/ dersch/Jasymca/Jasymca.pdf
[4] www.octave.org/

[5] www.mathworks.com

53

[6] www.scilab.org/

[7] http://maxima.sourceforge.net/

[8] www.hs-furtwangen.de/ dersch/jasymca2/indexENIhtm
[9] http://www.netlib.org/java/f2j/

[10] www.netlib.org/lapack/

[11] mathworld.wolfram.com/HorowitzReduction.html

[12] http://java.sun.com

[13] http://java.sun.com/j2me/

[14] www.gnu.org/software/classpath/

[15] www.vni.com/

54

