
Java Application: IconEdit
Written by: Keith Fenske, http://www.psc-consulting.ca/fenske/
First version: Thursday, 22 March 2007
Document revised: Saturday, 13 February 2010
Copyright © 2007 by Keith Fenske. Released under the GNU General Public License (GPL).

Description
IconEdit is a Java 1.4 graphical (GUI) application to edit icon files (*.ICO) for Windows. An
icon file can contain more than one image, in more than one size. Supported sizes are from 8×8
to 255×255 pixels, with standard sizes of 16×16, 24×24, 32×32, 48×48, and 64×64 pixels. All
icons are square. Colors may be 4-bit (16 colors), 8-bit (256 colors), or 24-bit (millions). For 4-
bit color, only the standard Windows color palette is used, although other palettes will be read
and converted. For 8-bit color, only the standard 216 “web safe” colors are used. Other palettes
will be read and converted. There are no restrictions on 24-bit colors; all RGB (red-green-blue)
values are accepted. As an alternative to having a solid color (“opaque”), pixels may be
transparent and let the background show through. Most icons use the “web safe” colors in 16×16
or 32×32 sizes.

When you first run IconEdit, you are given a selection of icon sizes and a partially-hidden
dialog for choosing colors. You may read icons from a file with the “Open Icon File” button.
Icons will appear in the same order as they are defined in the file. Tabs on the left-hand side
identify icons by their size; click on a tab to select an icon. To change an icon, first select a color
with the color chooser. Then left click (primary mouse click) on an icon square to paint the
selected color. Right click (or control click) to erase a square and make it transparent, which is
shown as the current background color (see the slider). Shift click on a square to select its color
without painting. You may save all non-empty icons to a new file with the “Save Icon File”
button.

These drawing tools are crude. This program is meant more for loading icons, making minor
changes, and saving them again. For better drawing tools, use your favorite bitmapped image
editor and copy-and-paste to this application. Images on the system clipboard don’t retain
transparency data. This was added to the BufferedImage class starting in Java 5.0 (1.5).

Macintosh and Linux users should note that the FAVICON.ICO files used to bookmark web
pages can be created with this program, because they are in fact Windows icons.

Java Application: IconEdit • by: Keith Fenske • page 1 of 9

GNU General Public License (GPL)
IconEdit is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the
License or (at your option) any later version. This program is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY, without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details. You should have received a copy of the GNU General Public
License along with this program. If not, see the http://www.gnu.org/licenses/ web page.

Installation
You must have the Java run-time environment (JRE) installed on your computer. IconEdit was
developed with Java 1.4 and should run on later versions. It may also run on earlier versions, but
this has not been tested. For Macintosh computers, the version of Java is determined by your
version of MacOS. For Windows, Linux, and Solaris, you can download the JRE from Sun
Microsystems:

Sun Java
JRE for end users: http://www.java.com/getjava/

SDK for programmers: http://developers.sun.com/downloads/

IDE for programmers: http://www.netbeans.org/

Once Java is installed, you need to put the program files for IconEdit into a folder (directory) on
your hard drive. The name of the folder and the location are your choice, except it is easier if the
name does not include spaces. Assume that files will go into a C:\JAVA folder. Then create the
folder and unpack the Java *.class files into this folder (if you received the program as a ZIP
file). The files look something like this:

GnuPublicLicense3.txt (35 KB, legal notice)
IconEdit1.class (24 KB, executable program)
IconEdit1.doc (53 KB, this documentation in Microsoft Word format)
IconEdit1.gif (17 KB, sample program image)
IconEdit1.ico (3 KB, icon for Windows)
IconEdit1.jar (22 KB, archive file with same class files inside)
IconEdit1.java (115 KB, source code)
IconEdit1.manifest (1 KB, main class manifest for archive file)
IconEdit1.pdf (95 KB, this documentation in Adobe Acrobat format)
IconEdit1Draw.class (4 KB, helper class for main program)
IconEdit1Filter.class (1 KB)
IconEdit1Icon.class (10 KB)
IconEdit1User.class (1 KB)
RunJavaPrograms.pdf (88 KB, more notes about running Java)

Java Application: IconEdit • by: Keith Fenske • page 2 of 9

To run the program on Windows, start a DOS command prompt, which is Start button, Programs,
Accessories, Command Prompt on Windows 2000/XP. Change to the folder with the program
files and run the program with a “java” command:

c:
cd \java
java IconEdit1

The program name “IconEdit1” must appear exactly as shown; uppercase and lowercase letters
are different in Java names. Some systems (Macintosh) will run a main “class” file by clicking
on the class file name while viewing a directory in the file browser (Mac Finder). Many systems
will run a “jar” file by clicking (or double clicking) on the jar file name (Windows Explorer).
The command line is the only guaranteed way of running a Java program. Should you find this
program to be popular, you can create a Start menu item or desktop shortcut on Windows
2000/XP with a target of “java.exe IconEdit1” starting in the “c:\java” folder.

One complication may arise when trying to run this program. Java looks for an environment
variable called CLASSPATH. If it finds this variable, then that is a list of folders where it looks
for *.class files. It won’t look anywhere else, not even in the current directory, unless the path
contains “.” as one of the choices. The symptom is an error message that says:

Exception in thread "main" java.lang.NoClassDefFoundError: IconEdit1

To find out if your system has a CLASSPATH variable defined, type the following command in
a DOS window:

set CLASSPATH

To temporarily change the CLASSPATH variable to the current directory, use the following
command line:

java -cp . IconEdit1

To permanently change the CLASSPATH, you must find where it is being set. This may be in an
old AUTOEXEC.* file in the root directory of your system disk (usually the C:\ folder), or it may
be in Control Panel, System, Advanced, Environment Variables on Windows 2000/XP.

Removal or Uninstall
To remove this program from your computer, delete the installation files listed above. If the
folder that contained the files is now empty, you may also delete the folder ... if you created the
folder, of course, not the system. If you created desktop shortcuts or Start menu items, then

Java Application: IconEdit • by: Keith Fenske • page 3 of 9

delete those too. There are no hidden configuration or preference files, and no information is
stored in the Windows system registry. You don’t need an “uninstall” program.

Graphical Versus Console Application
This is a graphical application. There are no options. The only parameter that you may give on
the command line is a single icon file name.

Restrictions and Limitations
Icons are actually more complicated than having solid colors mixed with transparent squares.
Standard icons in Windows use two bit masks, first to AND existing screen pixels, and second to
XOR icon pixels onto the screen. For the most part, this amounts to replacing or not replacing
screen pixels with icon pixels. However, an icon can be designed to invert screen pixels by
setting bits in both the AND mask and the XOR mask. Such an icon doesn’t contain its own
picture information, isn’t recognized by this program, and may open as ugly color data. Another
new type of icon in Windows Vista has 24-bit color (8-bit red, 8-bit green, 8-bit blue) with an 8-
bit alpha channel to control the degree of transparency. IconEdit ignores alpha channels and uses
the AND mask for fully transparent or fully opaque (solid).

file: IconEdit1.doc 2010-02-13

Java Application: IconEdit • by: Keith Fenske • page 4 of 9

Icon File Format for Windows
Written by: Keith Fenske, http://www.psc-consulting.ca/fenske/
First version: Thursday, 22 March 2007
Document revised: Tuesday, 27 March 2007
Copyright © 2007 by Keith Fenske. All rights reserved.

The following information was obtained from web pages, from official Microsoft documentation,
and by examining icon files from various sources. Some of this information may be incorrect,
especially concerning new features added for Windows Vista. Please advise the author of any
changes or suggestions. All numbers are unsigned integers. Multi-byte numbers are in “little
endian” order where the least-significant byte appears first.

Icon Header (ICONDIR)
The file begins with an icon header to identify this as an icon file and to provide basic infor-
mation about each image in the file.

idReserved 2 bytes reserved: must be zero.

idType 2 bytes resource type: must be 1 for icons. Cursor files have a very
similar format, and you can read most cursor files as icons if you
accept a value of 2 for the idType field. However, don’t write
cursor files as icons, because some of the unused fields in an icon
have a different purpose in a cursor.

idCount 2 bytes number of images in this icon file. Obviously, there should be at
least one.

idEntries[] IconDirEntry one “icon directory” entry for each image in this icon file.

Icon Directory Entry (ICONDIRENTRY)
There is one icon directory entry for each image in the icon file. Some of the fields here
duplicate fields in the bitmap information header, and because of that, you may see icons that set
different values for fields that should be the same.

Java Application: IconEdit • by: Keith Fenske • page 5 of 9

bWidth one byte width of this icon image in pixels. The most common sizes are
16 and 32. Also in use are 24, 48, and 64. Windows Vista
claims 96, 128, and 256 — although it is not clear how the
number 256 can be encoded as a byte value, unless the value
zero takes on a special meaning. In general, the original
specification allows icon sizes from 1 to 255 pixels.

bHeight one byte height of this icon image in pixels. While the specifications do
allow different values for height and width, almost all icons are
square and have the same size in both directions.

bColorCount one byte number of colors in image. For 1-bit color, this should be 2.
For 4-bit color, this should be 16. For 8-bit, 24-bit, and 32-bit
color, this must be zero. This field is not reliable and is often
set incorrectly. For example, you will see icons that set this
field to the number of colors actually used by the icon.

bReserved one byte reserved: must be zero.

wPlanes 2 bytes number of color planes: should be 1, but may appear as zero in
some files. Ignore this value when reading an icon.

wBitCount 2 bytes number of bits per pixel: 1 for monochrome color (2 colors), 4
for 4-bit color (16 colors), 8 for 256 colors, 24 for RGB color
(millions), or 32 for RGB color with an alpha channel. This
field should match biBitCount in the “icon image” entry, but
note that it is sometimes incorrect. Trust biBitCount more than
wBitCount.

dwBytesInRes 4 bytes total number of bytes in the “icon image” entry that follows.

dwImageOffset 4 bytes location of the “icon image” entry as a byte offset from the
beginning of the file.

Image Data (ICONIMAGE)
Each image in the icon file has an “icon image” entry that actually totally defines the image.
This entry is a specialized “device independent bitmap” (DIB). It can, in theory, appear
anywhere in the file after the icon directory is finished. In practice, image entries appear in the
same order as the directory entries, but you should not assume that the bytes are consecutive in
the file. That is, always locate an image entry from its dwImageOffset field.

icHeader[] BitmapInfoHeader “DIB” header (see following table).

Java Application: IconEdit • by: Keith Fenske • page 6 of 9

icColors[] RGBQuad palette with color table. Only used for 1-bit, 4-bit, and 8-bit
colors. Not used and must not appear for 24-bit and 32-bit
color. For 1-bit color, there must be exactly 2 entries. For
4-bit color, there must be exactly 16 entries. For 8-bit color,
there must be exactly 256 entries. Each entry has four bytes
as follows:

rgbBlue: blue component of color
rgbGreen: green component of color

rgbRed: red component of color
rgbReserved: must be zero for palettes

Note that the order is BGR (blue-green-red), not RGB.

icXOR[] byte array XOR color data. The size of this array depends upon the
height of the icon, the width of the icon, and the number of
bits per pixel (see biBitCount below). For 1-bit, 4-bit, and
8-bit color, there is one entry of that bit size for each pixel.
Each entry is an index into the color table or palette (see
icColors above). For 24-bit color, there are three bytes per
pixel, in the same order as the first three bytes of the
RGBQuad above. When writing transparent pixels for color
depths from 1 to 24 bits, you should set the icXOR color to
black (all zeros).

For 32-bit color, there are four bytes per pixel in the
same format as RGBQuad, except that the fourth byte is the
alpha channel and controls the degree of transparency (from
0 for completely transparent to 255 for completely opaque).

The byte array begins with the bottom row or “scan
line” of the image, not the top row as you might expect.
Each row does begin with the first column, as expected.
For 1-bit color, the most significant bit of the first byte is
the first column. For 4-bit color, the most significant nibble
of the first byte is the first column. For all color depths,
there is a special requirement that is almost undocumented:
all rows or “scan lines” must be a multiple of 32 bits (4
bytes), and any unused bits at the end of a row must be set
to zero.

Java Application: IconEdit • by: Keith Fenske • page 7 of 9

icAND[] byte array AND bitmask. There is one bit per pixel, in the same order
as icXOR above and with the same restriction on having
multiples of 32 bits per row. A bit value of zero means to
remove the existing screen pixel and replace it with a pixel
from the icon (that is, the icon pixel is “solid” or “opaque”).
A bit value of one means to leave the existing screen pixel,
in which case the XOR color data should be zero to make
the icon transparent for this pixel. If the AND bit is one and
the XOR data is not zero, then screen pixels will be inverted
where the XOR data has one bits (useful for cursors, but not
particularly useful for icons).

The icAND field must appear for all color depths,
including 24-bit and 32-bit, even though 32-bit color has
alpha channel information.

Bitmap Information Header (BITMAPINFOHEADER)
Not all of these fields are used for icons, but they must all appear. Unused fields are generally set
to zero. There are extra fields because the same structure is used throughout Windows.

biSize 4 bytes size of the BitmapInfoHeader structure in bytes (always 40
decimal or 0x28 hexadecimal).

biWidth 4 bytes width of bitmap (that is, the icon) in pixels. Should match
bWidth above.

biHeight 4 bytes height of bitmap in pixels. Must be twice the value of bHeight
above, because it’s the combined height of the XOR data plus
the AND mask. In the official Microsoft documentation for all
bitmap images, there is an explanation that says, “If biHeight is
positive, the bitmap is a bottom-up DIB with the origin at the
lower left corner. If biHeight is negative, the bitmap is a top-
down DIB with the origin at the upper left corner.” It is not
known if any icon files use negative values for this field.

biPlanes 2 bytes number of color planes. Must be 1. Ignore this value when
reading an icon.

biBitCount 2 bytes number of bits per pixel: 1, 4, 8, 24, or 32. Should match
wBitCount but wBitCount has been known to be wrong. Trust
biBitCount more than wBitCount.

Java Application: IconEdit • by: Keith Fenske • page 8 of 9

biCompression 4 bytes compression used: should be zero. Ignore this value when
reading an icon.

biSizeImage 4 bytes size of the pixel data. Not always set consistently. Sometimes
you will see the size of the XOR color data alone. When
creating a new icon, set this to the total size of the XOR color
data plus the AND bitmask, in bytes.

biXPelsPerMeter 4 bytes horizontal resolution, in pixels per meter: should be zero.
Ignore this value when reading an icon.

biYPelsPerMeter 4 bytes vertical resolution, in pixels per meter: should be zero. Ignore
this value when reading an icon.

biClrUsed 4 bytes number of colors used. Ignore this value when reading an icon.
When creating a new icon, set this to zero, or to the palette size
for 1-bit, 4-bit, or 8-bit color.

The official Microsoft documentation says, “If the bitmap
uses 8 bpp [bits per pixel] or less, the bitmap has a color table
immediately following the BitmapInfoHeader structure. The
color table consists of an array of RGBQuad values. The size
of the array is given by the biClrUsed member. If biClrUsed is
zero, the array contains the maximum number of colors for the
given bit depth; that is, 2biBitCount colors.”

biClrImportant 4 bytes number of important colors. Ignore this value when reading an
icon. When creating a new icon, set this to zero, or to the
palette size for 1-bit, 4-bit, or 8-bit color.

Additional Information
Microsoft: Icons in Win32
http://msdn2.microsoft.com/en-us/library/ms997538.aspx

Microsoft: Windows GDI: BITMAPINFOHEADER
http://msdn2.microsoft.com/en-us/library/ms532290.aspx

Microsoft: Windows Vista: Icon Development Guidelines
http://msdn2.microsoft.com/en-us/library/aa511280.aspx

file: IconEdit1.doc 2007-03-27

Java Application: IconEdit • by: Keith Fenske • page 9 of 9

