
Jasymca 2.0 - Symbolic Calculator for Java

Helmut Dersch

March 15, 2009

Abstract

Jasymca is an interactive System for solving math problems.It sup-
ports arbitrary precision numbers and symbolic variables.Scalars, vectors,
and matrices can be built from all datatypes and used in calculations. From
the pseudoinverse of symbolic matrices over trigonometricsimplifications
to symbolic solutions of integrals and systems of equations, the main func-
tionalities of CAS-programs are provided. Additionaly, high performance
numerical routines from LAPACK and a plotmodule are implemented. The
user interface can be selected from either an Octave/Matlab/SciLab-like lan-
guage or a GNU-Maxima style. Three versions of Jasymca are provided
which cover almost any computer platform: A Midlet version for portable
devices like cellphones or PDAs, a java application for desktop PCs, lap-
tops and workstation, and an applet which can be integrated in webpages.
Jasymca is free software covered by the GNU public license.

Contents

1 Introduction 3

2 Working with Jasymca 4
2.1 Numbers . 4
2.2 Operators and Functions . 6
2.3 Variables . 8
2.4 Vectors und Matrices (1) . 11
2.5 Plotting . 14
2.6 Polynomials (1) . 17
2.7 Files . 18

1

2.8 Programming . 19
2.8.1 Functions . 19
2.8.2 Branches . 20
2.8.3 Loops . 20
2.8.4 Jumps . 21

2.9 Vectors and Matrices (2) . 22
2.9.1 LAPACK . 24

2.10 Symbolic Variables . 27
2.11 Polynomials (2) and Rational Functions 27

2.11.1 Roots . 28
2.11.2 Squarefree Decomposition 29
2.11.3 Division, Greatest Common Denominator 29
2.11.4 Real- and Imaginary Part 29

2.12 Symbolic Transformations . 30
2.12.1 Substitution . 30
2.12.2 Simplifying and Collecting Expressions31

2.13 Equations . 32
2.13.1 Systems of Linear Equations 32
2.13.2 Nonlinear Equations . 33
2.13.3 Systems of Nonlinear Equations 34

2.14 Calculus . 34
2.14.1 Differentiation . 34
2.14.2 Taylorpolynomial . 35
2.14.3 Indefinite Integral . 35
2.14.4 Numerical Integration 37
2.14.5 Differential Equations 38

3 Maxima-Mode 38

4 Reference 40
4.1 General . 40
4.2 Commands . 40
4.3 Operators . 41

4.3.1 Define . 41
4.3.2 Calculate . 41
4.3.3 Comparison and Logical Operators 42

4.4 Programming . 43
4.5 Functions . 44

2

4.5.1 Scalar . 44
4.5.2 Scalar Functions . 45
4.5.3 Vectors and Matrices . 46
4.5.4 Polynomials . 47
4.5.5 Equations and Expressions 47
4.5.6 Calculus . 48
4.5.7 Plots . 48

5 Installation 49

6 License 50

1 Introduction

Jasymca has been developed for teaching mathematics, especially to facilitate a
fast and easy entrance to computer mathematics. One of the main obstacles are
pocket calculators, which prevent many students from usingcomputers for math.
Pocket calculaters are cheap and portable, while CAS-programs are often expen-
sive and always require at least a laptop to run. Jasymca is free software and
runs on almost any system equipped with a microprocessor: from mobile phones
and pdas to windows/linux/macos computers, even on game consoles or internet
routers.

Jasymca 2.0 is based on Jasymca 1.01 [1] with significant extensions and im-
provements. Apart from the new grammar (Jasymca 1.01 was Maxima [7] - ori-
ented), matrix and plotfunktionen were added, as well as theparser and compiler
completely rewritten. The user interface defaults to a style reminiscent of Oc-
tave [4], Matlab [5] and SciLab [6], without copying each detail. Users of either
of these programs should have no problems using Jasymca, and, for the sake of
teaching, vice versa. The main extension to these programs is the seamless inte-
gration of symbolic calculations, which do not require special commands.

The user interface can be switched to GNU-Maxima-style, which is more con-
veniant for some problems, see chapter 3 for details.

Chapter 2 of this document is a tutorial with examples and exercises, par-
tially taken from our introductory Computer-Mathcourse for engineering students.
Most examples can be solved by the applet at the Jasymca-homepage [8], and
do not require any installation. The next chapter briefly explains the alternative
Maxima-mode. An overview and reference to all commands, functions and op-

3

tions follows (chapter 4), and the last chapter (5) deals with technicalities of
installing Jasymca on computers and mobile devices.

2 Working with Jasymca

Your computer must be equipped with a recent Java-Version (≥ 1,5). No further
installation is required: Just visit the Jasymca-homepage[8] to start the program.
Of course, you can also use a local installation on any suitable system, see chap-
ter 5 for an installation guide.

Jasymca starts up in Octave-mode. Commands are entered using the keyboard
in the textinput field in the lower part of the window. The results are displayed
and saved in the upper large textarea. The zoom-function in the main menu adjusts
font size. The buttons< and> recall earlier commands (scrolling the command
history). The same operation is acieved by typing the arrow keys of the keyboard,
and is an importand aid for efficient working.

Typing demoENstarts a 5-minutes demonstration of Jasymca’s capabilities.
In the following examples and exercises the verbatim response of Jasymca is dis-
played; to repeat the results you have to copy the text after the prompt (>>) into
the textinputfield and pressenter.

2.1 Numbers

Numbers are entered in the usual Computer format: with optional decimalpoint
and decimal exponent following the lettere (or E). The numbers 5364 and
−1.723478265342·1012 should be entered like:

>> 5364
ans = 5364
>> -1.723478265342e12
ans = -1.7235E12

Most of the time these will be stored as floating point data (double, IEEE standard
754). They are rounded to 5 significant digits for display, but for calculations
the full precision of this format is always preserved (15-16decimal digits). By
switching the format (format long) all significant places are displayed.

>> format long
>> -1.723478265342e12
ans = -1.723478265342E12

4

As an extension Jasymca offers the commandformat Base Number , which
is used to display numbers in a system with arbitraryBase with anyNumber of
significant digits. To display numbers with 15 digits in the binary system we type:

>> format 2 15
>> -1.723478265342e12
ans = -1.1001000101001E40

Using format short returns the display mode to default (short decimal). It
should be emphasized, that none of the format commands influences theinternal
representation and accuracy of floating point numbers.

Numbers, which are entered without decimal point and exponent, and which
are larger than 1015 are stored as exact rational datatype. These numbers are
internally represented as quotient of two variable length integers (java datatype
BigInteger), which allows you to perform calculations without any rounding
errors. In the first case of the following example a floating point number is gener-
ated, in the second case an exact rational:

>> 10000000000000001.
ans = 1.0E16
>> 10000000000000001
ans = 10000000000000001

Each floating point numberZ can be converted to an exact number using the com-
mandrat(Z) . The conversion is accomplished by continued fraction expansion
with an accuracy determined by the variableratepsilon (default: 10−8).

>> rat(0.33333333333333333)
ans = 1/3

Operations between exact and floating point numbers always lead to the promotion
of floating point numbers. Calculations can be performed without rounding errors
by “rationalizing” just the first number.

>> 1/21/525/21/5 * 7* 175* 63* 15-1
ans = -4.4409E-16
>> rat(1)/21/525/21/5 * 7* 175* 63* 15-1
ans = 0

5

Conversely, the commandfloat(Z) converts numbers into floating point for-
mat. Both commands also work for composite datatypes, like polynomials and
matrices, whose coefficients are transformed in one step. Irrational function val-
ues of exact numbers and constants likepi remain unevaluated until thefloat -
command is issued.

>> sqrt(2)
ans = 1.4142
>> sqrt(rat(2))
ans = sqrt(2)
>> float(ans)
ans = 1.4142

The exact datatype is useful especially for unstable problems, like solving
systems of linear equations with ill-conditioned matrix. The Hilbert-matrix is an
extreme example:

>> det(hilb(20) * invhilb(20))
ans = 1 % correct
>> det(float(hilb(20)) * float(invhilb(20)))
ans = 1.6713E151 % slightly wrong

Imaginary numbers are marked with an immediately followingi or j . This
will work even if the predefined variablesi andj have been overwritten.

>> 2+3i
ans = 2+3i

2.2 Operators and Functions

The basic arithmetic operations are marked with the usual symbols (+ - * /)
. Exponention is performed with the accent character (ˆ). Multiplication and
division precede addition and subtraction; any order of evaluation can be forced
by parenthesis.

6

Exercise 1 (Numbers and Operators)

Calculate the following mathematical expressions:

3.23·
14−25

15− (33−23)
4.5·10−23 : 0.0000013

17.4(3−2.131.2)0.16 17.23·104

1.12− 17.23·104

1.12− 17.23·104
1.12

Solution:

>> 3.23 * (14-2ˆ5)/(15-(3ˆ3-2ˆ3))
ans = 14.535
>> 4.5e-23/0.0000013
ans = 3.4615E-17
>> 17.4ˆ((3-2.13ˆ1.2)ˆ0.16)
ans = 13.125
>> 17.23e4/(1.12-17.23e4/(1.12-17.23e4/1.12))
ans = 76919

In addition to these arithmetic operators Jasymca providesoperators for com-
paring numbers (< > >= <= == ˜=), and for boolean functions (& | ˜).
Logical true is the number 1,false is 0.

>> 1+eps>1
ans = 1
>> 1+eps/2>1 % defines eps
ans = 0
>> A=1;B=1;C=1; % semikolon suppresses output.
>> !(A&B)|(B&C) == (C˜=A)
ans = 1

The most common implemented functions are the squareroot (sqrt(x)), the
trigonometric functions (sin(x), cos(x), tan(x)) and inverses
(atan(x), atan2(y,x)), and the hyperbolic functions (exp(x), log(x)).
A large number of additional functions are available, see the list in chapter 4.
Some functions are specific to integers, and also work with arbitrary large num-

7

bers:primes(Z) expandsZ into primefactors,factorial(Z) calculates the
factorial function. Modular division is provided bydivide and treated later in
the context of polynomials.

Example: Functions

>> log(sqrt(854)) % natural logarithm
ans = 3.375
>> 0.5 * log(854)
ans = 3.375
>> float(sin(pi/2)) % argument in radian
ans = 1
>> gammaln(1234) % log(gamma(x))
ans = 7547
>> primes(1000000000000000001)
ans = [101 9901 999999000001]
>> factorial(35)
ans = 1.0333E40
>> factorial(rat(35)) % to make it exact.
ans = 10333147966386144929666651337523200000000

2.3 Variables

Variables are declared by supplying a name and value in the formatname=value .
The name can be any charactersequence. With the exception ofthe first character
it may also contain numbers. The value is any number or expression.

>> x=24+3i
x = 24+3i

Some variables are predefined (likepi). The last previous result of a calcu-
lation is stored in the variableans . All variables are displayed by the command
who. Single variables can be deleted by enteringclear variable .

It is possible to define variables whose value is a function. In this case the
function’s name must be preceded by the character$ to suppress evaluation.
These variables can be used like the function they stand for.For example, who
dislikes the builtin functionrealpart(x) ’s name can shorten it to the Matlab-
version:

8

>> real=$realpart
$realpart
>> real(24+3i)
ans = 24

Exercise 2 (Variables)

Convert several temperatures (0◦C,20◦C,30◦C,50◦C) from Celsius to Fahrenheit-scale.
The formula for transformations to Fahrenheit-degrees reads:

T/◦F = 9/5·T/◦C +32

Use variables for the temperatures.
Solution:

>> TC=20
TC = 20
>> TF=9/5 * TC+32
TF = 68
>> TC=30
TC = 30
>> TF=9/5 * TC+32 % Repeat with arrow key
TF = 86

9

Exercise 3 (Variables)

Calculate the skin surface of your body from heighth und weightW using DuBois’ for-
mula:

A = h0.725(cm) ·W 0.425(kg) ·71.84·10−4(m2)

Use variablesh andW .
Solution:

>> h=182; W=71;
>> A=hˆ0.725 * Wˆ0.425 * 71.84e-4
A = 1.9129

Exercise 4 (Variables)

Calculate some elements of the recursively defined sequence

x0 = 1 xn+1 =
1
2
(xn +

3
xn

)

When does this sequence approach its limit
√

3 to within 2* eps ?
Solution:

>> x=1
x = 1
>> x=1/2 * (x+3/x); x-sqrt(3) % n= 1
ans = 0.26795
>> x=1/2 * (x+3/x); x-sqrt(3) % n= 2
ans = 1.7949E-2
>> x=1/2 * (x+3/x); x-sqrt(3) % n= 3
ans = 9.205E-5
>> x=1/2 * (x+3/x); x-sqrt(3) % n= 4
ans = 2.4459E-9
>> x=1/2 * (x+3/x); x-sqrt(3) % n= 5
ans = 0 % Bingo

10

2.4 Vectors und Matrices (1)

These datatypes are either used for multidimensional objects, or for simultaneous
calculations on large numbers of data, e.g. for statisticalproblems. In this chapter
we discuss this latter aspect. Linear algebra and the usual vector calculations are
treated in chapter 2.9.

Vectors are marked with square brackets. The elements are entered as comma-
separated list. The commas may be left if the elements can be distiguished in a
unique manner, which however fails in the second example below:

>> x=[1,-2,3,-4]
x = [1 -2 3 -4]
>> x=[1 - 2 3 -4] % Caution: 1-2=-1
x = [-1 3 -4]

Colon and the functionlinspace are used to define ranges of numbers as vec-
tors.

>> y=1:10 % 1 to 10, step 1
y = [1 2 3 4 5 6 7 8 9 10]
>> y=1:0.1:1.5 % 1 to 1.5, step 0.1
y = [1 1.1 1.2 1.3 1.4 1.5]
>> y=linspace(0,2,5) % 5 from 0 to 2.5, equidistant.
y = [0 0.5 1 1.5 2]

The number of elements in a vectorx is calculated with the functionlength(x) ,
individual elements are extracted by providing the indexk like x(k) . This index
k must be a number in the range 1 to (including)length(x) . The colon oper-
ator plays a special role: Used as index, all elements of the vector are returned.
Additionally, ranges of numbers can be used as index.

>> y(2) % single element
ans = 0.5
>> y(:) % magic colon
ans = [0 0.5 1 1.5 2]
>> y(2:3) % index between 2 and 3
ans = [0.5 1]
>> y(2:length(y)) % all from index 2
ans = [0.5 1 1.5 2]
>> y([1,3,4]) % indices 1,3 and 4

11

ans = [0 1 1.5]
>> y([1,3,4]) = 9 % insert
ans = [9 0.5 9 9 2]
>> y([1,3,4]) = [1,2,3] % insert
ans = [1 0.5 2 3 2]

Matrices are handled in a similar way, only with two indices for rownumber
(first index) and columnnumber (second index). Rows are separated by either a
semicolon or a linefeed during input.

>> M=[1:3 ; 4:6 ; 7:9]
M =

1 2 3
4 5 6
7 8 9

>> M([1 3],:)
ans =

1 2 3
7 8 9

>> C=M<4
C =

1 1 1
0 0 0
0 0 0

The operators of chapter 2.2 may be applied to vectors and matrices. If scalar,
per-element operation is desired, some operators (* / ˆ) must be preceded by a
point to distinguish them from the quite different linear-algebra versions of these
operations (see chapter 2.9). Further useful functions aresum(vector) and
prod(vector) which return the sum and product of the vectors elements.

12

Exercise 5 (Vectors)

Working with vectors: Calculate

k=n

∑
k=1

k
k=n

∑
k=1

k2
k=n

∑
k=1

k3

for n = 10,n = 100,n = 10000.
Solution:

>> n=10; k=1:n;
>> sum(k), sum(k. * k), sum(k.ˆ3) % point!
ans = 55
ans = 385
ans = 3025
>> n=100; k=1:n;
>> sum(k), sum(k. * k), sum(k.ˆ3)
ans = 5050
ans = 3.3835E5
ans = 2.5503E7
>> n=10000; k=1:n;
>> sum(k), sum(k. * k), sum(k.ˆ3)
ans = 5.0005E7
ans = 3.3338E11
ans = 2.5005E15

Exercise 6 (Vectors)

Transform the list of Celsiustemperatures−30◦C,−29◦C, . . . ,80◦C into Fahrenheitde-
grees. Use vectors.
Solution:

>> TC=-30:80;
>> TF=9/5 * TC+32
TF = [-22 -20.2 -18.4 -16.6 -14.8 -13 -11.2 -9.4 ..

13

2.5 Plotting

Data may be graphed using theplot(x,y) -function, x and y being equalsized
vectors, which denote the coordinates of the datapoints to be plotted. A third
optional argumentplot(x,y,option) specifies plotoptions like colors and
symbols, see exercise 7ff. The graphic may then be decorated(axis, title) and ex-
ported as encapsulated-postscript file for inclusion in textdocuments. This export
option is not available in the applet and midlet versions of Jasymca. Withhold
(or hold on) the graphic gets locked so that subsequent plotcommands use the
same window. Repeatinghold (or hold off) deletes the graphic.

Logarithmic and semilogarithmic plots are provided with the functionsloglog ,
linlog andloglin .

Exercise 7 (Plotting)

Plot the functiony = 1
1+2x2 in the rangex = 0.01 . . . 100 linear and logarithmic.

Solution:

>> x=0.01:0.01:100; y=1./(1+0.5 * x. * x); plot(x,y)
>> x=0.01:0.01:100; y=1./(1+0.5 * x. * x); loglog(x,y)

Exercise 8 (Plotting)

Display of Lissajous-figures: From the vectort=0:0.1:4 * pi; create the trigonometric
expressionsx=sin(0.5 * t+1); und y=cos(1.5 * t); . The plot x vs. y is called
Lissajous-figure. Create different figures by variating the constants0.5,1,1.5 in the
definition.
Partial solution:

>> t=0:0.1:4 * pi;
>> x=sin(0.5 * t+1);
>> y=cos(1.5 * t);
>> plot(x,y)

14

Exercise 9 (Plotting)

Calculate the first 100 elements of the sequences

xn =
n−1

n
;xn =

n+1
n

;xn =
n+(−1)n

n

Plot xn versusn using the commandplot(n, xn) . Variate the plotoptions (colors,
symbols).
Solution:

>> n=1:100;
>> x1=(n-1)./n; x2=(n+1)./n; x3=(n+(-1).ˆn)./n;
>> plot(n,x1) % Standard: blue, lines
>> hold
Current plot held.
>> plot(n,x2,’r’) % Color: r,g,b,c,m,y,w.
>> plot(n,x3,’g’)

15

Exercise 10 (Plotting)

Plot the datapoints of the following table usingplot and colored symbols. Calculate the
linear regression usingpolyfit , and plot the regression line in the same graph. Add
title and labels, and export the graphic to a file suitable forinclusion in a text document.

x 0 1 2 3 4 5 6 7 8 9
y -3.1 -0.7 1.8 4.1 6.2 8.9 11.3 13.5 16 18.3

Solution:

>> x=0:9;
>> y=[-3.1,-0.7,1.8,4.1,6.2,8.9,11.3,13.5,16,18.3];
>> plot(x,y,"+r") % Symbol: o,x,+, *
>> hold
Current plot held.
>> plot(x,polyval(polyfit(x,y,1),x)) % Regression
>> xlabel("x-Achse")
>> ylabel("y-Achse")
>> title("Beispielgraph")
>> print("graph.eps") % not Applet or Midlet!

16

2.6 Polynomials (1)

Jasymca can handle polynomials with symbolic variables. Inthis chapter, how-
ever, we work with the Matlab/Octave/Scilab-approach of using vectors as list
of polynomial coefficients: A polynomial of degreen is represented by a vec-
tor havingn + 1 elements, the element with index 1 being the coefficient of the
highest exponent in the polynomial. Withpoly(x) a normal polynomial is cre-
ated, whose zeros are the elements ofx , polyval(a,x) returns functionvalues
of the polynomial with coefficientsa in the pointx , roots(a) calculates the
zeros, andpolyfit(x,y,n) calculates the coefficients of the polynomial of
degreen, whose graph passes through the points x ynd y. If their number is larger
thann+1 a least square estimate is performed. The regression analysis in exercise
8 was performed using this method.

Exercise 11

The roots of a 4th-degree polynomial are−4,−2,2,4 and it intersects the y-axis at
(y = −64). Calculate its coefficients:
2 Solutions:

>> a=poly([-4,-2,2,4])
a = [1 0 -20 0 64]
>> a = -64/polyval(a,0) * a
a =

-1 0 20 0 -64
>> a = polyfit([-4,-2,2,4,0],[0,0,0,0,-64],4)
a =

-1 0 20 0 -64

17

Exercise 12

On a grid withx,y-Koordinaten we have the following greyvalues of a digital image:

y\x 1 2 3 4
1 98 110 122 136
2 91 112 131 141
3 73 118 145 190
4 43 129 170 230

Which greyvalue do you expect at positionx = 2,35;y = 2,74? Calculate the bicubic
interpolation.

Solution:

>> Z=[98,110,122,136;
> 91,112,131,141;
> 73,118,145,190;
> 43,129,170,230];
>> i=1; p=polyfit(1:4,Z(i,:),3); z(i)=polyval(p,2.35);
>> i=2; p=polyfit(1:4,Z(i,:),3); z(i)=polyval(p,2.35);
>> i=3; p=polyfit(1:4,Z(i,:),3); z(i)=polyval(p,2.35);
>> i=4; p=polyfit(1:4,Z(i,:),3); z(i)=polyval(p,2.35);
>> p=polyfit(1:4,z,3); zp=polyval(p,2.74)
zp = 124.82

2.7 Files

Reading and writing files is simplest with the Jasymca application, since file ac-
cess by applets and midlets is often restricted due to security measures. Menu-
options are provided for working with files:

File : Open Script

A scriptfile is read into Jasymca. The scriptfile must be plaintext, which can
be generated with common texteditors (e.g. Notepad, TextWrangler, KWrite for
the platforms windows, macos, linux). The content of the scriptfile is treated as
if it were entered in the textinputfield of Jasymca, i.e. it must be a list of valid
commands.

18

This can be used to read in data from a data aquisition system for analysis,
or to load user programs (see chapter 2.8). Quite useful are lists of constants or
material data which are often required for exercises.

It is possible to load files from the textinputfield without menu: In this case
the file must end with “.m” (e.g. “data.m”), and reside withinJasymcas searchpath
(see below). Entering the filenamewithout the ending “.m” (in this example:data)
loads the data.

File : Save History

A protocol of the running session is created with all entriesin the command his-
tory. This can be loaded in subsequent sessions using “Open Script”.

File : Add Path

The search path specifies the directories which Jasymca searches when loading
files. The commandpath displays the list of these directories. No subdirectories
are entered. If a directory is to be added to the searchpath, this can be done either
using this menuoption, or the commandaddpath(’path’) . The namepath
must be quoted.

>> path
m:.
>> addpath(’/Users/dersch/jasymca’)
>> path
/Users/dersch/jasymca:m:.

2.8 Programming

2.8.1 Functions

Programs can be created and run interactively. Programminga function is demon-
strated in the following example of a functionttwo(x) , which multiplies its
argument by 2. After the definition it can be used like any other Jasymca function.

>> function y=ttwo(x) y=2 * x; end
>> ttwo(3.123)
ans = 6.246

19

Following the keywordfunction is the prototype with a return variabley . This
replaces the constructreturn y of other programming languages.

If functions are to be reused later, they should be written toa textfile and saved
somewhere in Jasymcas searchpath. The filename must be the function name
extended by “.m”, in the present examplettwo.m . In subsequent sessions the
function ttwo can be used without separately loading the file. Several installed
functions of Jasymca are provided using this mechanism.

2.8.2 Branches

if x A end
Depending on the conditionx one or several statementsA are executed. The
conditionx must be an arbitrary expression, which evaluates to either 0or 1. The
false-case (i.e. x=0) can lead to another branchB:
if x A else B end
As an example the Heavyside funkcion:

>> function y=H(x)
> if (x>=0)
> y=1;
> else
> y=0;
> end
> end
>> H(-2)
y = 0
>> H(0)
y = 1

2.8.3 Loops

Loops with conditionx and statement(s)A:
while x A end
Thewhile -loop is repeated untilx becomes false (0).

>> x=1;y=1;
>> while(x<10) y=x+y; x++; end
>> y
y = 46

20

Loops with counterz and statement(s)A:
for z = vector A end
In the for -loop the counter is formally initialized by avector . In each execu-
tion of the loop the counter takes on the value of the next element ofvector .

>> x=1;y=1;
>> for(x=1:0.1:100) y=xˆ2+y; end
>> y
y = 3.3383E6

2.8.4 Jumps

return, continue, break
A function may be prematurely left usingreturn . continue andbreak are
used in loops:continue jumps back to the start of the loop, and begins another
cycle.break permanently leaves the loop.

>> x=1;
>> while(1)
> if(x>1000)
> break;
> end
> x++;
> end
>> x
x = 1001

21

2.9 Vectors and Matrices (2)

Several standardmatrices are created by means of functionswithout specifying
individual elements:ones(n,m) , zeros(n,m) , rand(n,m) return matrices
with elements 1, 0 or random numbers between 0 and 1.eye(n,m) has diago-
nalelements 1, else 0, andhilb(n) creates the n-th degree Hilbert-matrix.

>> A=rand(1,3)
A =

0.33138 0.94928 0.56824
>> B=hilb(4)
B =

1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

The following functions are provided for matrix calculations:diag(x) (extracts
diagonal elements),det(x) (determinante),eig(x) (eigenvalues),inv(x)
(inverse),pinv(x) (pseudoinverse). The adjunct matrix is created using the
operator’ .

>> det(hilb(4))
ans = 1/6048000
>> M=[2 3 1; 4 4 5; 2 9 3];
>> M’
ans =

2 4 2
3 4 9
1 5 3

>> eig(M)
ans = [11.531 -3.593 1.062]
>> inv(M)
ans =

0.75 0 -0.25
4.5455E-2 -9.0909E-2 0.13636
-0.63636 0.27273 9.0909E-2

The nontrivial functions are all based on the LU-decomposition, which is also
accessible as a function calllu(x) . It has 2 or 3 return values, therefor the left
side of the equation must provide multiple variables, see example below:

22

>> M=[2 3 1; 4 4 5; 2 9 3]
>> [l,u,p]=lu(M) % 2 or 3 return values
l = % left triangular matrix (perm.)

0.5 0.14286 1
1 0 0
0.5 1 0

u = % right upper triangular matrix
4 4 5
0 7 0.5
0 0 -1.5714

p = % permutation matrix
0 0 1
1 0 0
0 1 0

Without preceding point the arithmetic operators functionas matrix operators, e.g.
* corresponds to matrix and vector multiplication.

>> x=[2,1,4]; y=[3,5,6];
>> x. * y % with point
ans = [6 5 24]
>> x* y % without point
ans = 35

If one of the arguments is a scalar datatype, the operation isrepeated for each
element of the other argument:

>> x=[2,1,4];
>> x+3
ans = [5 4 7]

Matrix division corresponds to multiplication by the pseudoinverse. Using the
operator\ leads to left-division, which can be used to solve systems oflinear
equations:

>> M=[2 3 1; 4 4 5; 2 9 3];
>> b=[0;3;1];
>> x=M\b % solution of M * x = b
x =

-0.25

23

-0.13636
0.90909

>> M* x % control
ans =

0
3
1

Systems of linear equations can (and should) be solved directly with the function
linsolve(A,b) which will be discussed in chapter 2.13.1.

2.9.1 LAPACK

The application jasymca (not the applet or midlet) contain JLAPACK [9], the
Java-port of the LAPACK [10]-routines with extended and better algorithms for
matrix calculations. However, these are limited to matrices with real coefficients
in floating point format. The LAPACK routines are accessed bythe following
functions:

svd(A) Singular value decomposition ofA (1 or 3 returnvalues).

>> A=[2 3 1; 4 4 5; 2 9 3];
>> svd(A)
ans = [12.263 3.697 0.9705]

qr(A) QR-decomposition ofA (2 returnvalues).

>> A=[2 3 1; 4 4 5; 2 9 3];
>> [q,r]=qr(A)
q =

-0.40825 -5.3149E-2 -0.91132
-0.8165 -0.4252 0.39057
-0.40825 0.90354 0.13019

r =
-4.899 -8.165 -5.7155
0 6.2716 0.53149
0 0 1.4321

linsolve2(A, b) SolvesA · x = b (1 returnvalue). Example in chapter 2.13.1.

24

linlstsq(A, b) SolvesA · x = b, overdetermined (1 return value). For an example
see insert “Comparison of LAPACK and Jasymca Routines”.

eigen(A) Eigenvalues ofA (1 returnvalue).

>> A=[2 3 1; 4 4 5; 2 9 3];
>> eigen(A)
ans = [11.531 1.062 -3.593]

25

Comparison of LAPACK and Jasymca Routines

We calculate the 4-th degree regression polynomial for the following x,y-data:

>> x=[1:6],y=x+1
x = [1 2 3 4 5 6]
y = [2 3 4 5 6 7]
>> polyfit(x,y,4)
p =

5.1958E-14 -9.6634E-13 -2.4727E-12 1 1

The coefficientsp(1),p(2),p(3) should vanish sincex and y represent a perfect
straight line. This is an unstable problem, and it can be easily extended to make Jasymca
completely fail. In our second attempt we use the Lapack-routine linlstsq :

>> x=[1:6],y=x+1;
>> l=length(x);n=4;
>> X=(x’ * ones(1,n+1)).ˆ(ones(l,1) * (n:-1:0))
>> linlstsq(X,y’)
ans =

-1.6288E-18
-7.0249E-17
1.0653E-15
1
1

The coefficientsp(1),p(2),p(3) are now significantly smaller. This particular prob-
lem can be solved exactly using Jasymca-routines and exact numbers, which avoids any
rounding errors:

>> x=rat([1:6]);y=x+1;
>> polyfit(x,y,4)
p =

0 0 0 1 1

26

2.10 Symbolic Variables

In contrast to the examples Octave and Matlab, Jasymca integrates numeric and
symbolic datatypes at the core of the program; symbolic mathis not treated as an
add-on. This means that with few exceptions most operationsaccept any mixture
of numeric and symbolic arguments using the same commands and commandsyn-
tax.

Symbolic variables should not be confused with variables asdiscussed until
now. These latter variables serve as address for an object inmemory (the “environ-
ment”), while symbolic variables are algebraic objects on their own. That means
if x is a conventional variable, enteringx in the textinputfield makes Jasymca
search in the environment for the corresponding object, which then replacesx . If
howeverx is a symbolic variable, the same action will lead to the creation of a
first-degree polynomial with variablex and coefficients 1 and 0.

In Octave-mode, each symbolic variablex must be declared as symbolic by
enteringsyms x before using it. The commandclear x deletes the symbolic
(actually any) variablex .

>> x=3; % nonsymbolic variable
>> xˆ2+3-2 * sin(x) % placeholder for ’3’
ans = 11.718
>> syms x % symbolic variable
>> xˆ2+3-2 * sin(x) % create function
ans = -2 * sin(x)+(xˆ2+3)

2.11 Polynomials (2) and Rational Functions

We have learnt that polynomials may be represented by the vector of their coeffi-
cient. Using a symbolic variablex we will now create a symbolic polynomialp.
Conversely, we can extract the coefficients from a symbolic polynomial using the
functioncoeff(p, x, exponent) . The commandallroots(p) returns
the zeros.

>> a=[3 2 5 7 4]; % coefficients
>> syms x
>> y=polyval(a,x) % symbolic polynomial
y = 3 * xˆ4+2 * xˆ3+5 * xˆ2+7 * x+4
>> coeff(y,x,3) % get one coefficient
ans = 2

27

>> b=coeff(y,x,4:-1:0) % or all at once
b = [3 2 5 7 4]
>> allroots(y) % same as roots(a)
ans = [0.363-1.374i 0.363+1.374i

-0.697-0.418i -0.697+0.418i]

Up to this point there is little advantage of using symbolic calculations, it is
just another way of specifying a problem. The main benefit of symbolic calcu-
lations emerges when we are dealing with more than one symbolic variable, or,
meaning essentially the same, when our polynomial has nonconstant coefficients.
This case can be treated efficiently only with symbolic variables. Notice in the
example below how the polynomial y is automatically multiplied through, and
brought into a canonical form. In this form the symbolic variables are sorted
alphabetically, i.e.z is main variable compared tox . The coefficients can be
calculated for each variable separately.

>> syms x,z
>> y=(x-3) * (x-1) * (z-2) * (z+1)
y = (xˆ2-4 * x+3) * zˆ2+(-xˆ2+4 * x-3) * z+(-2 * xˆ2+8 * x-6)
>> coeff(y,x,2)
ans = zˆ2-z-2
>> coeff(y,z,2)
ans = xˆ2-4 * x+3

2.11.1 Roots

The commandallroots functions with variable coefficients also, but only,
if the polynomials degree in the main variable is smaller than 3, or it is bi-
quadratic. If roots of other variablesx are searched, one should use the more
generalsolve(p,x) , which will be discussed in more detail later.

>> syms x,z
>> y = x * zˆ2-3 * x* z+(2 * x+1);
>> allroots(y)
ans = [sqrt((1/4 * x-1)/x)+3/2 -sqrt((1/4 * x-1)/x)+3/2]
>> solve(y,x)
ans = -1/(zˆ2-3 * z+2)

28

2.11.2 Squarefree Decomposition

The decomposition ofp in linear, quadratic, cubic etc factors is accomplished
by sqfr(p) . Returned is a vector of factors sorted in ascending order ofthe
exponents.

>> syms x
>> y=(x-1)ˆ3 * (x-2)ˆ2 * (x-3) * (x-4)
y = xˆ7-14 * xˆ6+80 * xˆ5-242 * xˆ4+419 * xˆ3-416 * xˆ2+220 * x-48
>> z=sqfr(y)
z = [xˆ2-7 * x+12 x-2 x-1]

2.11.3 Division, Greatest Common Denominator

The division of two polynomialsp and q in one polynomial and remainder is
calculated usingdivide(p,q) . If the polynomials have more than one variable,
an optional variable can be specified, which will be used for division. gcd(p,q)
returns the greatest common denominator of two expressions. Both functions also
work with numbers as arguments.

>> divide(122344,7623)
ans = [16 376]
>> divide(2+i,3+2 * i)
ans = [1/2 1/2]
>> syms x,z
>> divide(xˆ3 * z-1,x * z-x,x)
ans = [xˆ2 * z/(z-1) -1]
>> divide(xˆ3 * z-1,x * z-x,z)
ans = [xˆ2 xˆ3-1]
>> gcd(32897397,24552502)
ans = 377
>> gcd(z * xˆ5-z,xˆ2-2 * x+1)
ans = x-1

2.11.4 Real- and Imaginary Part

realpart(expression) and imagpart(expression) is used to de-
compose complex expressions. Symbolic variables in these expressions are as-
sumed to be real-valued.

29

>> syms x
>> y=(3+i * x)/(2-i * x)
y = (-x+3i)/(x+2i)
>> realpart(y)
ans = (-xˆ2+6)/(xˆ2+4)
>> imagpart(y)
ans = 5 * x/(xˆ2+4)

2.12 Symbolic Transformations

2.12.1 Substitution

Parts of an expression may be replaced by other expressions usingsubst(a,b,c) :
a is substituted forb in c . This is a powerful function with many uses.

First, it may be used to insert numbers for variables, in the example 3 forx in
der formula 2

√
x · e−x2

.

>> syms x
>> a=2* sqrt(x) * exp(-xˆ2);
>> subst(3,x,a)
ans = 4.275E-4

Second, one can replace a symbolic variable by a complex term. The expres-
sion is automatically updated to the canonical format. In the following example
z3+2 is inserted forx in x3 +2x2 + x+7.

>> syms x,z
>> p=xˆ3+2 * xˆ2+x+7;
>> subst(zˆ3+2,x,p)
ans = zˆ9+8 * zˆ6+21 * zˆ3+25

Finally, the termb itself may be a complex expression (in the examplez2 +

1). Jasymca then tries to identify this expression inc (example: z·x3
√

z2+1
). This

is accomplished by solving the equationa = b for the symbolic variable inb
(example:z), and inserting the solution inc . This does not always succeed, or
there may be several solutions, which are returned as a vector.

>> syms x,y,z
>> c=xˆ3 * z/sqrt(zˆ2+1);
>> d=subst(y,zˆ2+1,c)

30

d = [xˆ3 * sqrt(y-1)/sqrt(sqrt(y-1)ˆ2+1)
-xˆ3 * sqrt(y-1)/sqrt(sqrt(y-1)ˆ2+1)]

>> d=trigrat(d)
d = [xˆ3 * sqrt(y-1)/sqrt(y)

-xˆ3 * sqrt(y-1)/sqrt(y)]

2.12.2 Simplifying and Collecting Expressions

The functiontrigrat (expression) applies a series of algorithms toexpression.

• All numbers are transformed to exact format.

• Trigonometric functions are expanded to complex exponentials.

• Addition theorems for the exponentials are applied.

• Square roots are calculated and collected.

• Complex exponentials are backtransformed to trigonometric functions.

It is often required to applyfloat(expression) to the final result.

>> syms x
>> trigrat(sin(x)ˆ2+cos(x)ˆ2)
ans = 1
>> b=sin(x)ˆ2+sin(x+2 * pi/3)ˆ2+sin(x+4 * pi/3)ˆ2;
>> trigrat(b)
ans = 3/2
>> trigrat(i/2 * log(x+i * pi))
ans = 1/4 * i * log(xˆ2+piˆ2)+(1/2 * atan(x/pi)-1/4 * pi)
>> trigrat(sin((x+y)/2) * cos((x-y)/2))
ans = 1/2 * sin(y)+1/2 * sin(x)
>> trigrat(sqrt(4 * yˆ2+4 * x* y-4 * y+xˆ2-2 * x+1))
ans = y+(1/2 * x-1/2)

trigexpand(expression) expands trigonometric expressions to complex
exponentials. It is the first step of the functiontrigrat above.

>> syms x
>> trigexp(i * tan(i * x))
ans = (-exp(2 * x)+1)/(exp(2 * x)+1)
>> trigexp(atan(1-xˆ2))
ans = -1/2 * i * log((-xˆ2+(1-1 * i))/(xˆ2+(-1-1 * i)))

31

2.13 Equations

2.13.1 Systems of Linear Equations

Solving systems of linear equations is accomplished by either the function
linsolve(A,b) (all versions of Jasymca), orlinsolve2(A,b) (LAPACK,
not in applet and midlet). In both cases A is the quadratic matrix of the system of
equations, and b a (row or column) vector representing the right-hand-side of the
equations. The equations may be written asA · z = b and we solve forz.

>> A=[2 3 1; 4 4 5; 2 9 3];
>> b=[0;3;1];
>> linsolve(A,b)
ans =

-0.25
-0.13636
0.90909

>> linsolve2(A,b) % not Applet or Midlet
ans =

-0.25
-0.13636
0.90909

For large numeric matrices one should use the LAPACK-version if available. The
Jasymca version can also handle matrices containing exact or symbolic elements.
To avoid rounding errors in these cases it is advisable to work with exact numbers
if possible:

>> syms x,y
>> A=[x,1,-2,-2,0;1 2 3 * y 4 5;1 2 2 0 1;9 1 6 0 -1;0 0 1 0]
A =

x 1 -2 -2 0 % symbolic element
1 2 3* y 4 5 % symbolic element
1 2 2 0 1
9 1 6 0 -1
0 0 1 0 0

>> b = [1 -2 3 2 4];
>> trigrat(linsolve(rat(A), b))

ans =

32

(-6 * y-13/2)/(x+8)
(20 * y+(-9 * x-151/3))/(x+8)
4
((-3 * x+10) * y+(-49/4 * x-367/6))/(x+8)
(-34 * y+(13 * x+403/6))/(x+8)

2.13.2 Nonlinear Equations

“Equation” in the following means the equationexpression = 0 . Equations
are solved for a symbolic variablex by the functionsolve(expression, x) .
If expression is a quotient, thennominator = 0 is solved. Jasymca uses
the following strategy to solve equations:

1. First, all occurances of the variablex in expression are counted, both
as free variable and embedded inside functions. Example: Inx3 · sin(x)+
2x2−

√
x−1 x occurs three times: as free variable, in sin(x) and in

√
x−1.

2. If this count is one, then we are dealing with a polynomic equation, which
is solved for the polynomial’s main variable, e.g.z . This works always,
if the polynomial’s degree is 2 or of it is biquadratic, otherwise only, if
the coefficients are constant. In the next step the solution is solved for the
desired variablex . As an example: Jasymca has to solve sin2(x)−2sin(x)+
1 = 0 for x. It first solvesz2−2z + 1 = 0 for z and then sin(x) = z for x.
Examples with free variables:

>> syms x,b
>> solve(xˆ2-1,x)
ans = [1 -1]
>> solve(xˆ2-2 * x* b+bˆ2,x)
ans = b

An example with functionvariable (exp(j · x)):

>> syms x
>> float(solve(sin(x)ˆ2+2 * cos(x)-0.5,x))
ans = [1.438i -1.438i -1.7975 1.7975]

3. If count is 2, only one case is further considered: The variable occurs free
and inside squareroot. This squareroot is then isolated, the equation squared

33

and solved. This case leads to additional false solutions, which have to be
sorted out manually.

>> syms x
>> y=xˆ2+3 * x-17 * sqrt(3 * xˆ2+12);
>> solve(y,x)
ans = [-32.501 26.528

-1.3931E-2-2.0055i -1.3931E-2+2.0055i]

4. In all other cases Jasymca gives up.

2.13.3 Systems of Nonlinear Equations

Coupled systems of equations can be solved by the function
algsys([expressions],[symbolic variables]) . First, all linear
equations are solved using the Gauss-method, then each equation is fed through
solve() and the solution used to eliminate one variable in all other expressions.
The equations are treated in the order they are supplied. This method only works
for simple systems. The solution is provided as vector of solutionvectors, each
individual solution in as linear factor: In the first examplebelow there is one so-
lution with xs=-2/3, a2=3/4, a0=2, a1=0 , the second example has two
solutions.

>> syms xs,a0,a1,a2
>> algsys([2-a0,a1-0,a2 * xsˆ2+a1 * xs+a0-3-xs,
> 2* a2* xs+a1+1],[a2,a1,a0,xs])
ans = [[xs+2/3 a2-3/4 a0-2 a1]]
>> syms a,xs
>> algsys([a * xs+3 * a-(3-xsˆ2),a+2 * xs],[a,xs])
ans = [[-sqrt(6)+(xs+3) 2 * sqrt(6)+(a-6)]

[sqrt(6)+(xs+3) -2 * sqrt(6)+(a-6)]]
>> float(ans)
ans = [[xs+0.55051 a-1.101] [xs+5.4495 a-10.899]]

2.14 Calculus

2.14.1 Differentiation

diff(function,x) differentiatesfunction with respect to the symbolic
variablex . The main variable offunction is used ifx is not provided. Func-

34

tions defined by user programs can often be handled as well.

>> syms a,x
>> diff(a * xˆ3)
ans = 3 * a* xˆ2
>> diff(a * xˆ3,a)
ans = xˆ3
>> diff(3 * sqrt(exp(x)+2),x)
ans = 1.5 * exp(x)/sqrt(exp(x)+2)
>> diff(sin(x)) % no variable specified
ans = 1 % use z=sin(x) as variable
>> diff(sin(x),x) % more reasonable
ans = cos(x)
>> function y=ttwo(x) y=2 * x; end
>> diff(ttwo(sin(x)),x)
ans = 2 * cos(x)

2.14.2 Taylorpolynomial

taylor(function, x, x0, n) calculates then-th Taylorpolynomial in
the symbolic variablex at the pointx0 .

>> syms x
>> taylor(log(x),x,1,1)
ans = x-1
>> rat(taylor(exp(x),x,0,6))
ans = 1/720 * xˆ6+1/120 * xˆ5+1/24 * xˆ4+1/6 * xˆ3+1/2 * xˆ2+x+1
>> float(taylor(xˆ3 * sin(2 * x+pi/4),x,pi/8,2))
ans = 1.057 * xˆ2-0.36751 * x+4.1881E-2

2.14.3 Indefinite Integral

integrate(function, x) integrates expressionfunction with respect
to the symbolic variablex . Jasymca uses the following strategy:

1. Integrals of builtin-functions and all polynomials are provided:

>> syms x
>> integrate(xˆ2+x-3,x)

35

ans = 0.33333 * xˆ3+0.5 * xˆ2-3 * x
>> integrate(sin(x),x)
ans = -cos(x)

2. If function is rational (i.e. quotient of two polynomials, whose coeffi-
cients do not depend onx)) we use the standard approach: Separate a poly-
nomial part, then separate a square free part using Horowitz’ [11] method,
and finally integrate the rest using partial fractions. The final terms are col-
lected to avoid complex expressions.

>> syms x
>> y=(xˆ3+2 * xˆ2-x+1)/((x+i) * (x-i) * (x+3))
y = (xˆ3+2 * xˆ2-x+1)/(xˆ3+3 * xˆ2+x+3)
>> integrate(y,x)
ans = -1/4 * log(xˆ2+1)+(-1/2 * log(x+3)+(-1/2 * atan(x)+x))
>> diff(ans,x) % control
ans = (xˆ3+2 * xˆ2-x+1)/(xˆ3+3 * xˆ2+x+3)

3. Expressions of typeg(f (x)) · f ′(x) and f ′(x)
f (x) are detected:

>> syms x
>> integrate(x * exp(-2 * xˆ2),x)
ans = -0.25 * exp(-2 * xˆ2)
>> integrate(exp(x)/(3+exp(x)),x)
ans = log(exp(x)+3)

4. Substitutions of type(a · x+b) are applied:

>> syms x
>> integrate(3 * sin(2 * x-4),x)
ans = -1.5 * cos(2 * x-4)

5. Productspolynomial(x)· f (x) are fed through partial integration. This solves
all cases wheref is one ofexp, sin , cos , log , atan.

>> syms x
>> integrate(xˆ3 * exp(-2 * x),x)
ans = (-0.5 * xˆ3-0.75 * xˆ2-0.75 * x-0.375) * exp(-2 * x)
>> integrate(xˆ2 * log(x),x)
ans = 0.33333 * xˆ3 * log(x)-0.11111 * xˆ3

36

6. All trig and exp-functions are normalized. This solves any expression,
which is the product of any number and any type of exponentials and trigono-
metric functions, and some cases of rational expressions oftrig- and exp-
functions

>> syms x
>> integrate(sin(x) * cos(3 * x)ˆ2,x)
ans = -3.5714E-2 * cos(7 * x)+(5.0E-2 * cos(5 * x)-0.5 * cos(x))
>> integrate(1/(sin(3 * x)+1),x)
ans = -2/3 * cos(3/2 * x)/(sin(3/2 * x)+cos(3/2 * x))

7. The special case
√

ax2 +bx+ c is implemented:

>> syms x
>> integrate(sqrt(xˆ2-1),x)
ans = 0.5 * x* sqrt(xˆ2-1)-0.5 * log(2 * sqrt(xˆ2-1)+2 * x)

8. Clever substitutions may be supplied manually throughsubst() . If all
fails, integrate numerically usingquad or romberg .

The symbolic variable may be omitted if it is the main variable ofexpression .
Integrations can be quickly verified usingdiff() on the result.

2.14.4 Numerical Integration

Two routines are supplied for numerical integration, whichare both not very so-
phisticated. quad(’expression’,ll,ul) is modelled after the Octave/-
Matlab integration function, but much simpler. Simpson’s method is applied with
a fixed number of nodes. This function uses the “eval”-methodrather than sym-
bolic variables. The function has to be supplied as quoted string, and must be com-
patible with vector arguments. Finally, the variablename must bex . romberg
uses symbolic function definitions, and a symbolic variablehas to be supplied.
The maximum number of iterations is set by the variablerombergit (default
11) and accuracy byrombergtol (default: 10−4).

>> quad(’exp(-x.ˆ2)’,0,5)
s = 0.88623
>> syms x
>> romberg(exp(-xˆ2),x,0,5)
ans = 0.88623

37

2.14.5 Differential Equations

ode(expression,y,x) solves the linear first-order differential equationy′ =
f (x) · y +g(x). expression is the complete right-hand-side of the equation,x
andy are symbolic variables. Free constants in the solution are markedC.

>> ode(x,y,x)
ans = 0.5 * xˆ2+C
>> syms k
>> ode(-k * y,y,x)
ans = C* exp(-k * x)
>> ode(y * tan(x)+cos(x),y,x)
ans = (0.5 * cos(x) * sin(x)+(0.5 * x+C))/cos(x)

3 Maxima-Mode

The userinterface can be switched to Maxima-mode during a running session by
selecting the menuoptionRun - Maxima Mode and back to Octave-mode by se-
lectingRun - Octave Mode. All variables keep their values; they can be cleared
if required by clickingRun - Clear Environment. Normally Jasymca starts up in
Octave-mode; see chapter 5 for instructions on how to start up in Maxima-mode.

Not only do the two user-interfaces differ in grammar and semantics regarding
some operators and functions (see chapter 4 for an overview): In Maxima-mode,
symbolic variables need not be declared as such bysyms. Jasymca automatically
creates symbolic variables for each unknown character sequence. Return values
are automatically assigned to variables namedd1,d2,d3,.. , and remain acces-
sible throughout the session. These two features make Maxima-mode favourable
for work with symbolic expressions, since few variables need to be declared. It is
less suitable for large amounts of data since each intermediate result is saved, and
fills up memory.

Some random examples follow. Commands in Maxima-mode must be con-
cluded with a semicolon and may extend beyond several lines,i.e. hitting “return”
without the semicolon leaves Jasymca waiting for more input.

c1) [2,3,4]+[4,5,6]; % semicolon!
d1 = [6 8 10] % automatic variable d1

(c2) d1[2] * d1[3]; % index in brackets
d2 = 80

38

(c3) xˆ2+3 = y * x-2; % automatic symbolic vars
d3 = -x * y+(xˆ2+5) % equations are differences

(c4) choose(n,k):=n!/((n-k)! * k!); % defining functions
choose
(c5) sum(1/kˆ2,k,1,1000);% 2. version of sum

d4 = 1.6439
(c6) allroots((x-1)ˆ3 * (x-2)ˆ2 * (x-3) * (x-4));

d5 = [4 3 2 2 1 1 1]
(c7) allroots(xˆ2+1);

d6 = [1 * i -1 * i]
c8) a:x+2-y; % assignment with ’:’

a = -y+(x+2)

Working with m-files is not supported, therefor all functions loaded by this
mechanism do not work in Maxima-mode. Working with vectors and matri-
ces is also less comfortable: While the builtin functions (determinante, inverse,
LAPACK-functions, etc) are available, the conveniant methods for indexing, ex-
traction and insertion (colon operator) are not supported.

Working with files is accomplished using theloadfile und save - func-
tions, or the menu-fileoptions.

39

4 Reference

4.1 General

Textinput is concluded with lineend (linefeed or carriage return character) in Octave-
mode, and semicolon together with lineend in Maxima-mode. One textinput may
consist of several statements separated by commas or semicolons. In Octave-
mode the concluding character determines, whether the command’s output is dis-
played in the textconsole (not with semicolon). Comments are marked in both
modes by the character%or #; the respective line is ignored starting at this let-
ter. Variable names are case-sensitive, not, however, the names of builtin func-
tions. Long calculations and infinite loops in programs can be interrupted using
the menu-optionRun - Interrupt or by typingCtrl-c . This does not work, how-
ever, with builtin functions.

The following list summarizes how argument data types in thesubsequent
reference tables are characterized.

Example Font Description

long typewriter constant literal text
name slanted textstring, always quoted (single ’ or double ”)
var italic algebraic expression, with or without symbols,

scalar, vector, matrix.
vector italic vector, numeric or symbolic (except Lapack)
matrix italic matrix, numeric or symbolic (except Lapack)
sym italic symbolic variable
COUNT small capitals integer, often> 0 required.

4.2 Commands

Commands are used for setting modes and options. In contrastto functions, ar-
guments my be supplied without parenthesis. Only one command per textinput is
allowed.

40

Name Option Description Mod Ref

format short
long
BASE COUNT

displayformat for floating-
point numbers: 5 digits,
all digits or in BASE with
COUNT digits.

M,O

syms sym1 [,sym2, . . .] declaresym1, . . . as symbolic
variable.

O

clear var1 [,var2, . . .] delete variablesvar1, . . . M,O
who display all variables M,O
path show searchpath M,O
addpath path add to searchpath M,O
hold lock/unlock graphic window M,O
hold on lock graphic window M,O
hold off unlock graphic window M,O

4.3 Operators

4.3.1 Define

Type Example O-Mode Example M-Mode

Numer -3.214e-12 -3.214e-12
Vector [1 2 3 4] [1,2,3,4]
Matrix [1 2 ; 3 4] matrix([1,2],[3,4])
Vectorelement x(2) x[2]
Matrixelement x(2,1) x[2,1]
Range 2:5
Variable x = 2.321 x : 2.321;

4.3.2 Calculate

This table shows operators with one example each for Octave-mode (O-mode) and
Maxima-mode (M-mode). Operations are executed according to their precedence
(prec), and, if these are equal, inorder.

41

Function O-Mode M-Mode Prec Order

Addition x + y x + y 4 left-right
Subtraction x - y x - y 4 left-right
Scalar Multiplication x . * y x * y 3 left-right
Vector/Matrix Multiplication x * y x . y 3 left-right
Scalar Division x ./ y x / y 3 left-right
Matrix Division (right) x / y 3 left-right
Matrix Division (left) x \ y 3 left-right
Scalar Exponentiation x .ˆ y x ˆ y 1 left-right
Vector/Matrix Exponentiation x ˆ y x ‘y 1 left-right
Range x:y:z 5 left-right
Assignment x = z x : y 10 right-left
Assignment x += z 10 right-left
Assignment x -= z 10 right-left
Assignment x /= z 10 right-left
Assignment x * = z 10 right-left
Preincrement ++x ++x 10 left-right
Predecrement --x --x 10 left-right
Postincrement x++ x++ 10 right-left
Postdecrement x-- x-- 10 right-left
Adjunct x’ 1 right-left
Factorial x! 1 left-right

4.3.3 Comparison and Logical Operators

Function O-Mode M-Mode Prec Order

Less x < y x < y 6 left-right
Less or equal x <= y x <= y 6 left-right
Larger x > y x > y 6 left-right
Larger or equal x >= y x >= y 6 left-right
Equal x == y x == y 6 left-right
Not equal x ˜= y x ˜= y 6 left-right
And x & y x & y 7 left-right
Or x | y x | y 9 left-right
Not ˜x ˜x 8 left-right

42

4.4 Programming

Both modes provide similar constructs with different grammar.

Oktave Mode

Branch if x==0 xp=1; end
if x==0 xp=1; else xp=2; end

Loop while x<17 x=x+1; end
for i=0:100 x=x+i; end

Jump return, continue, break
Function function y=ttwo(x) y=2 * x; end
Evaluate eval(’x=24’)
Textoutput printf(’Ergebnis=%f’, x)
Errormessage error(’Fehler’)

Maxima Mode

Branch if x==0 then (xp:1);
if x==0 then (xp:1) else (xp:2);

Loop while x<17 do (x:x+1);
for i:0 step 1 thru 100 do (x:x+i);

Jump return, continue, break
Function ttwo(x) := 2 * x;
Block block([x,y], x:1, y:1, z:z+x+y);
Textoutput printf(’Ergebnis=%f’, x);
Error error(’Fehler’);

43

4.5 Functions

4.5.1 Scalar

Name(Arguments) Function Mod Ref

float(var) var as floating point number M,O
rat (var) var as exact number M,O
realpart (var) realpart ofvar M,O
imagpart(var) imaginary part ofvar M,O
abs(var) absolute value ofvar M,O
sign(var) sign ofvar M,O
conj(var) var conjugate complex M,O
angle(var) angle ofvar M,O
cfs(var [,varT]) continued fraction expansion ofvar with

accuracyvarT

M,O

primes(VAR) VAR decomposed into primes M,O

44

4.5.2 Scalar Functions

Name(Arguments) Function Mod Ref

sqrt(var) squareroot M,O
exp(var) exponential M,O
log(var) natural logarithm M,O
sinh(var) hyperbolic sine O
cosh(var) hyperbolic cosine O
asinh(var) hyperbolic areasine O
acosh(var) hyperbolic areacosine O
sech(var) hyperbolic secans O
csch(var) hyperbolic cosecans O
asech(var) hyperbolic areasecans O
acsch(var) hyperbolic areacosecans O
sin(var) sine (radian) M,O
cos(var) cosine (radian) M,O
tan(var) tangens (radian) M,O
asin(var) arcsine (radian) M,O
acos(var) arccosine (radian) M,O
atan(var) arctangens (radian) M,O
atan2(var1, var2) arctangens (radian) M,O
sec(var) secans (radian) O
csc(var) cosecans (radian) O
asec(var) arcsecans (radian) O
acsc(var) arccosecans (radian) O
factorial (N) factorialN! M,O
nchoosek(N,K) binomial coefficient

(N
K

)

O
gamma(var) gammafunction M,O
gammaln(var) logarithm of gammafunction M,O

45

4.5.3 Vectors and Matrices

Name(Arguments) Function Mod Ref

linspace(var1,var2,COUNT) vector with COUNT numbers
ranging fromvar1 to var2

O

length(vector) number of elements invector M,O
zeros(ROWS[,COLUMNS]) matrix of zeros M,O
ones(ROWS[,COLUMNS]) matrix of ones M,O
eye(ROWS[,COLUMNS]) matrix with diagonal one M,O
rand(ROWS[,COLUMNS]) matrix of random numbers M,O
hilb (RANK) Hilbertmatrix M,O
invhilb (RANK) Inverse Hilbertmatrix O
size(matrix) number of rows and columns M,O
sum(var) if var is a vector: sum of ele-

ments, ifvar is a matrix: sum of
columns.

M,O

find(var) indices of nonvanishing ele-
ments

M,O

max(var) largest element invar M,O
min(var) smallest element invar M,O
diag(var,[OFFSET]) if var is a vector: matrix withvar

as diagonale, ifvar is matrix: di-
agonale as vector.

M,O

det(matrix) determinante M,O
eig(matrix) eigenvalues M,O
inv(matrix) inverse M,O
pinv(matrix) pseudoinverse M,O
lu(matrix) LU-decomposition M,O
svd(matrix) singular value decomposition

(Lapack)
M,O

qr (matrix) QR-decomposition (Lapack) M,O
eigen(matrix) eigenvalues (Lapack) M,O

46

4.5.4 Polynomials

Name(Arguments) Function Mod Ref

poly(vector) coefficients of polynomial hav-
ing rootsvector

O

polyval(vector, var) functionvalue of polynomial
with coefficientsvector in the
pointvar

O

polyfit (vectorx,vectory,N) fits N-th degree polynomial to
data points having coordinates
vectorx andvectory

O

roots(vector) roots of polynomial having co-
efficientsvector

M,O

coeff(var,sym,N) coefficient ofsymn in var M,O
divide(var1, var2) division var1

var2
with remainder M,O

gcd(var1, var2) greatest common denominator M,O
sqfr(var) squarefree decomposition M,O
allroots(var) roots M,O

4.5.5 Equations and Expressions

Name(Arguments) Function Mod Ref

subst(varx,vary,varz) substitutevarx for vary in varz M,O
trigrat (var) trigonometric and other simpli-

fications
M,O

trigexp(var) trigonometric expansion M,O
solve(var, Sym) solvesvar = 0 for Sym. M,O
algsys([var1, var2, . . .],[sym1,
sym2, . . .])

solves the system of equa-
tions var1 = 0,var2 = 0, . . . for
sym1,sym2,

M,O

linsolve(matrix, vector) solvesmatrix · x = vector for x M,O
linsolve2(matrix, vector) solvesmatrix · x = vector for x

(Lapack)
M,O

linlstsq(matrix, vector) solvesmatrix · x = vector for x,
overdetermined (Lapack)

M,O

47

4.5.6 Calculus

Name(Arguments) Function Mod Ref

sum(var,sym, INITIAL , FI-
NAL)

∑sym= f inal
sym=initial var M,O

lsum(var,sym,vector) ∑sym∈vector var M,O
diff (var[,sym]) dvar

dsym M,O
integrate(var[,sym])

R

var(sym)dsym M,O
romberg(var f ,sym, vara,
varb)

R varb
vara

var f dsym M,O

quad(expr, vara, varb)
R varb

vara
exprdx O

taylor (var f , sym, varp, N) N-th Taylorpolynomial of the
functionvar f with variablesym
in pointvarp.

M,O

ode(var, symy, symx) solves the linear differential
equation y′ = f (x) · y + g(x).
var is the right-hand-side of this
equation.

M,O

fzero(expr,vara, varb) find function zero betweenvara

andvarb

O

4.5.7 Plots

Name(Arguments) Function Mod Ref

plot(x,y [,option]) Plot x versusy usingoption
x andy are equalsized vectors.
option is a string, specifying color (one of
r,g,b,y,m,c,w,k) and symbol (one
of +, * ,o,x). Default: blue lines.

M,O

loglog(x,y[,option]) logarithmic plot M,O
linlog(x,y[,option]) semilogarithmic plot M,O
loglin(x,y[,option]) semilogarithmic plot M,O
print (name) write graphic in eps-file. M,O

48

5 Installation

Applet

The applet is automatically started when visiting the Jasymca homepage [8] with
a java-enabled (version≥ 1.5) webbrowser, no installation required. To create a
local copy of the Jasymca homepage move the directoryApplet of the distribu-
tion onto your computer, and click the fileindexEN.html (or open it in your
browser). Included is the online reference, the other linksin indexEN.html are
empty.

Application

The application Jasymca includes the LAPACK routines and allows you to work
with files. Move the directoryApplikation onto your computer. It contains
all data and programs required to run Jasymca. A current version (≥ 1.5) of the
Java-Runtime is required and can be downloaded from Sun [12]. Jasymca may
also be installed on removeable media (usb-sticks, memory cards) and read-only
media (cd-rom).

To start the program try to double-click the program iconjasymca.jar in
Applikation . If this does not work, open a command window on your com-
puter, navigate to the directoryApplikation and issue the command
java -jar jasymca.jar . Jasymca starts up in Maxima-mode by the com-
mand
java -jar jasymca.jar ui=Maxima .

Upon startup Jasymca searches a file namedJasymca.Octave.rc or
Jasymca.Maxima.rc depending on startup mode. If the environmental vari-
ableJASYMCA_RCis set on your system, Jasymca searches for a startup file under
this name extended by.Octave.rc or .Maxima.rc . This file may be used to
load often used constants or functions.

Midlet

The midlet version is mostly compatible with the applet including the plotting
function. The user interface is taken from my program FnattLavME [2], and de-
tails may be looked up there.

The installation on mobile devices like cellphones or pdas depends on the
system. Required is a java installation providing the APIs CLDC 1.1, MIDP 2.0,

49

JSR-75. Most current systems are either equipped with Java or it can be installed
from the manufacturer. The Jasymca midlet consists of the filesJasymca.jar
andJasymca.jad , both in the directoryMidlet . It can be installed over the
internet, or through a local connection (USB/Bluetooth/...) from your PC. Please
consult the manual of your mobile device. Detailled instructions for installations
on Palm Tungsten E and Nokia 6230i are available here [3].

6 License

Jasymca is free and open software. you can redistribute it and/or modify it under
the terms of the GNU General Public License. The license textis available in the
distribution and and can be downloaded from the homepage [8].

This document may only be copied for private purposes.
Jasymca uses modules and parts from other programs which arelisted together

with their licenses in this chapter.

• The files BigInteger.java, Random.java, and MPN.java are slightly modified
versions from the GNU-Classpath [14] project.

Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003,
2005 Free Software Foundation, Inc.

GNU Classpath is free software; you can
redistribute it and/or modify it under the terms
of the GNU General Public License as published by
the Free Software Foundation; either version 2, or
(at your option) any later version.

• The files JMath.java and SFun.java are derived from public sourdes by Vi-
sual Numerics Inc [15].

Copyright (c) 1999 Visual Numerics Inc. All Rights
Reserved.

Permission to use, copy, modify, and distribute
this software is freely granted by Visual
Numerics, Inc., provided that the copyright notice

50

above and the following warranty disclaimer are
preserved in human readable form.

• EPS Graphics Library:

Copyright (c) 2006-2007, Thomas Abeel Project:
http://sourceforge.net/projects/epsgraphics/ The
EPS Graphics Library is free software; you can
redistribute it and/or modify it under the terms
of the GNU General Public License as published by
the Free Software Foundation; either version 2 of
the License, or (at your option) any later
version.

• Pzeros.java:

derived from pzeros.f
<http://netlib.org/numeralgo/na10>

All the software contained in this library
is protected by copyright. Permission to use,
copy, modify, and distribute this software for
purpose without fee is hereby granted, provided
that this entire notice is included in all copies
of any software which is or includes a copy or
modification of this software and in all copies
of the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT
ANY EXPRESS OR IMPLIED WARRANTY. IN NO EVENT,
NEITHER THE AUTHORS, NOR THE PUBLISHER, NOR ANY
MEMBER OF THE EDITORIAL BOARD OF THE JOURNAL
"NUMERICAL ALGORITHMS", NOR ITS EDITOR-IN-CHIEF,
BE LIABLE FOR ANY ERROR IN THE SOFTWARE, ANY
MISUSE OF IT OR ANY DAMAGE ARISING OUT OF ITS
USE. THE ENTIRE RISK OF USING THE SOFTWARE LIES
WITH THE PARTY DOING SO.

51

ANY USE OF THE SOFTWARE CONSTITUTES ACCEPTANCE
OF THE TERMS OF THE ABOVE STATEMENT.

AUTHOR:

DARIO ANDREA BINI
UNIVERSITY OF PISA, ITALY
E-MAIL: bini@dm.unipi.it

REFERENCE:

- NUMERICAL COMPUTATION OF POLYNOMIAL
ZEROS BY MEANS OF ABERTH’S METHOD
NUMERICAL ALGORITHMS, 13 (1996),
PP. 179-200

SOFTWARE REVISION DATE:

JUNE, 1996

• BLAS, LAPACK und JLAPACK:

Copyright (c) 1992-2008 The University of
Tennessee. All rights reserved.

Redistribution and use in source and binary forms,
with or without modification, are permitted
provided that the following conditions are met:

- Redistributions of source code must retain the
above copyright notice, this list of conditions
and the following disclaimer.

- Redistributions in binary form must reproduce
the above copyright notice, this list of
conditions and the following disclaimer listed in
this license in the documentation and/or other

52

materials provided with the distribution.

- Neither the name of the copyright holders nor
the names of its contributors may be used to
endorse or promote products derived from this
software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

References

[1] www.hs-furtwangen.de/ dersch

[2] www.hs-furtwangen.de/ dersch/FnattLabME/FnattLabME2.pdf

[3] www.hs-furtwangen.de/ dersch/Jasymca/Jasymca.pdf

[4] www.octave.org/

[5] www.mathworks.com

53

[6] www.scilab.org/

[7] http://maxima.sourceforge.net/

[8] www.hs-furtwangen.de/ dersch/jasymca2/indexEN.html

[9] http://www.netlib.org/java/f2j/

[10] www.netlib.org/lapack/

[11] mathworld.wolfram.com/HorowitzReduction.html

[12] http://java.sun.com

[13] http://java.sun.com/j2me/

[14] www.gnu.org/software/classpath/

[15] www.vni.com/

54

