©

ScriptFire

FileMaker Plug-Iln Manual

Dacons



© 2006 Dacons LLP. All rights reserved.

This manual assumes that you have elementary knowledge of FileMaker and you know
how to use plug-in functions of this database platform.

This manual, as well as the software described in it, is furnished under a license and may not be copied, photocopied,
reproduced, translated, or converted to any electronic or machine-readable form in whole or in part without prior writ-
ten approval of Dacons LLP. Dacons assumes no responsibility or liability for any errors or inaccuracies that may
appear in this manual.

All trademarks and registered trademarks mentioned in this manual are the property of their respective owners.

Please send feedback to info@dacons.net

Website: http://www.dacons.net

May 01, 2006



CONTENTS

FUNCTION INDEX ... e \Y

FUNCTION OVERVIEW

Yo o (=T == U =S 6
FUNCHON OVEIVIEW.....ooiiiie e e e e e e e e 6
POSSIDIE SOIULIONS ..o e 6

INTRODUCTION

1Y 111 g I = (=T SR 7
ADBOUL thiS MANUAL ...t a e e 7
Software requirements for Windows ...........ccoooiiiiiiiiiiiii e 7
Software requirements for Macintosh..............ccccoeiiiiiiiiee e, 8
Installing the ScriptFire FileMaker plug-in ..., 8
HaNdS-0N ©XAMPIES.......uueiiiii e e e e e ae e aas 8

CHAPTER 1

Yo o L= = 2= TS o= SR 9
The concept of ScriptFire tasks ..... ... 9
How to use ScriptFire fUNCtioNS............ovviiiiiiii e 9
FUNCtion parameters. ... ... 11
Required and optional parameters...........cccceeeiiiiiiiiiee e 12
RESUIE COABS ...t e e e e e e e e e e e s 13
Schedule fOrmMatS.........ooi i e 14
File location formats ... 17

CHAPTER 2

Schedule-Based SCrPt TASKS .....c.iiuiiiiiiiiiie e e e 21
Schedule SCript tasks..........eiiiiii e 21
Schedule SCript @XamPle .........ooocuuiiiiiiiie e 22
Trigger scripts immediately..........c.oooiiiiiii 23

CHAPTER 3

Open and Close File TasKS ........uuuiiiiiiiiiiie e 24
Schedule open file tasks.........oo i 24
Schedule open file eXample .............eeeiiiiiiiiiiie e 25
Schedule CloSe file tasKS ....coiii i 26
Schedule close file eXample.............ooiiiiiiiiiiiiiiee e 27

Dacons ScriptFire Manual i



CHAPTER 4

Event-Based SCript TASKS .....ciiii it a e e e e e e e e e an 29
LA gL [0 = ] SRS 29
Window task €XamPIE...........oeveiiiiiiiiiiiiiiiiieiiieeie s 30
LaYOUL TASKS ...eeeeeiieiie et 31
Layout task @Xample.............eeiiiiiiiii e 32
Record and field @VENTS...........ooviviiiie e 32

CHAPTER S5

Power Management TaSKS.......cooi i ettt e e e ee e e e 35
] [T oI = 1] PRSP PPRPRRR 35
Sleep task eXampPle ... 36
ShULAOWN TASKS ...coeiiieieieieie e 36
Shutdown task eXample ... 37

CHAPTER 6

1Y =T a = To 1 g o T =TT GRS PPPRR 38
L= KT 111 G LR 38
REMOVE taSKS .....eueiiiiii s 38
Toggle task State ... 39
Retrieve the number of tasks ..o 39
Retrieve a list of installed tasks ..........ccuvviiiiiiei e 40
Retrieve task Settings ... 40
Block certain task types.......ooueii oo 40

CHAPTER 7

Logging PlUug-In ACHVItIES ......eeeiii i 42
Set 10gging PreferenNCES. ......oocoi i 42
Read from the 10g file .......coooiiiiii e 43
Write cuStOM 10Q €NTMHES ...oeeviieiiiiieieeeeeeee s 43

CHAPTER 8

Additional Plug-In FUNCHONS ... 44
Retrieve SCript parameter.............eveveiiiiiiiiii e —————— 44
Retrieve 1ast resSult COAe ... 44
Flash the application iCON ...........uuuiiieiiiii s 45
Retrieve plug-in VEIrSION ........c.uiiiiiiii e 45
Register the plug-in ... 46

Dacons ScriptFire Manual  iv



FUNCTION INDEX

SFiIre_AdACIOSETASK. ...ttt e e e e e e et e e e e e e e e e abareeeaaeeanas 27
SFire_AdALAYOUITASK .....coiiiiiiie e e e 32
SFire_AdAOPENTASK ...ttt e e e e e e e e e e e e e e rreeeaaaeas 25
SFIre_AdASCIPEITASK. ....eeeiiiieiie e e e 21
SFire_ AdAdSNULAOWNTASK ......ceeiiiii it e et e e e e e e e e reeeeaa e an 36
SFIre_AdASIEEPTASK. ....eeiiiiiiiie et 35
SFire_ AddWINAOWTASK .......uuiiiiiiiiiiiecee e e e e e e e araeeeaaa e 30
SFIre_FIaShICON. ...t s e e e e as 45
SFire_GetLastRESUCOUE..........coo i a e 44
SFire_GetScriptParameter ... 44
SFire_GetTasKCOUNT ...ttt e e e e e e e e et e e e e e e e e e eeabareeeeaaeeas 39
SFire_GetTasKList ......co et e e e e e e e e e e e e e e e e e e enns 40
SFire_GetTaskSetliNgS........uviiiiiii e e e e e e e e e e e e e e aaeeeaans 40
SFIre_REAALOG. ... e it 43
SFire_REGISIEIrSESSION ......uuiiiiiiiie e e e e e e e e raaae e 46
SFire_REeMOVETASK ..ot e e e e e e e 38
SFire_SetTaskSBIOCKING .....uuuiiiiiiei it e e e e e e e e e raeeeaaaee s 40
ST YRS T=1 18] o] o T USSR 42
ST Y o [ | L= 1K= T G PURRR 39
ST STV A= =T o RS PRRR 45
ST ST ATL 1 €= o T RS UPERRR 43

Dacons ScriptFire Manual Vv



FUNCTION OVERVIEW
ScriptFire Features

ScriptFire is a powerful FileMaker plug-in that enables you to trigger scripts anytime and in
any situation. Use ScriptFire to schedule scripts for hourly, daily, weekly, monthly or even
yearly execution. Open and close FileMaker databases based on schedules. Have Script-
Fire trigger your script to check user input after leaving a field or record. Define events that
trigger scripts when users access certain layouts or switch windows. By providing script
scheduling and event-based script execution, ScriptFire gives you full control over your
FileMaker solutions and enables you to create features not seen before.

Function overview

e Trigger scripts based on secondly, minutely, hourly, daily, weekly, monthly and even
yearly schedules

e Have scripts triggered once at an absolute or relative point in time

e Install schedules that trigger your scripts repetitively according to custom intervals

e Open and close FileMaker databases automatically based on the same type of
schedules — ScriptFire even opens password protected and shared FileMaker files

e Trigger scripts when certain layouts are accessed

e Control FileMaker windows by invoking a script when a certain window comes to front

e Trigger a script when exiting a field or when creating, viewing or exiting records

e Schedule the power management of the system that runs your FileMaker solution — put
the computer to sleep or even shut it down at a specific point in time

e Manage installed tasks of all types — suspend, resume or remove tasks and control
settings

Possible solutions

e Schedule database backups

e Schedule business process related tasks such as consolidations or notifications
¢ Implement reminder functionality for calendar solutions

e Schedule email sending and receiving (e.g. using Dacons mail.it)

o Validate user input against a script that is triggered when the user leaves a field
o Refresh content when layouts or windows are accessed

e Control computer power management out of FileMaker

Dacons ScriptFire Manual 6



INTRODUCTION
Getting Started

This chapter describes how to use this manual and provides all information you need to in-
stall the plug-in. In addition, you will see how to explore the powerful features of ScriptFire
using the Quick Start file that comes with this plug-in.

About this manual

This manual is written in an easy-to-follow style. Chapter 1 (— ScriptFire Basics, p. 9) ex-
plains schedule and file formats which are the basics of all ScriptFire functions. Once you
understood these basics you can skip to any chapter and focus on the information you cur-
rently require.

Chapter 2 (— Schedule-Based Script Tasks, p. 21) provides all information you need to
create your own schedule-based script tasks. Chapter 3 (— Event-Based Script Tasks,

p. 29) focuses on a different type of tasks that can be installed using ScriptFire. Event-
based tasks enable you to trigger scripts when layouts or windows are accessed or fields
are left. Read Chapter 4 (— Open and Close File Tasks, p. 24) to open and close database
files based on schedules. Chapter 5 through Chapter 8 provides information on managing
ScriptFire tasks and using advanced administration features.

ScriptFire support FileMaker 5.x and 6 as well as FileMaker 7 and 8. These two FileMaker
platforms use different styles to format plug-in function calls. Throughout this manual
ScriptFire functions will be formatted in the FileMaker 7 and 8 style. However, after reading
Chapter 1 (— ScriptFire Basics, p. 9), you will be able to apply the explanations and exam-
ples of other chapters to FileMaker 5.x and 6 solutions.

Software requirements for Windows

ScriptFire is available in two different versions for Windows. One version supports File-
Maker 5.x and 6 (Pro, Developer and Runtime) on the following Windows platforms:
Windows XP, Windows 2000 and Windows 98/ME.

The other version of ScriptFire supports the improved plug-in interface of FileMaker 7 and
8. (Pro, Developer/Advanced and Runtime) on the following Windows platforms:
Windows XP and Windows 2000.

Dacons ScriptFire Manual 7



When running ScriptFire under Windows 2000 you need Service Pack 4 for
Windows 2000.

Software requirements for Macintosh

ScriptFire is available in two different versions for Macintosh. One version supports File-
Maker 5.x and 6 (Pro, Developer and Runtime) on the following Macintosh platforms:
Mac OS 9.2 or higher including Mac OS X 10.2 and higher.

The other version of ScriptFire supports the improved plug-in interface for FileMaker 7 and
8 (Pro, Developer/Advanced and Runtime) on the following Macintosh platforms:
Mac OS X 10.2 and higher.

Installing the ScriptFire FileMaker plug-in

Before installing the ScriptFire plug-in, ensure you select the correct version from the
download package according to your operating system and FileMaker version.

ScriptFire is available in four versions:

e Windows for FileMaker 5.x and 6
e Windows for FileMaker 7 and 8

e Macintosh for FileMaker 5.x and 6
e Macintosh for FileMaker 7 and 8

Ensure that FileMaker is closed. Next, copy the ScriptFire plug-in into the following folder:

Windows:
FileMaker 5.x and 6: FileMaker System folder
FileMaker 7 and 8: FileMaker Extensions folder

Macintosh:
FileMaker 5.x and 6: FileMaker Extensions folder
FileMaker 7 and 8: Extensions folder

The folder you have to look for is located in the FileMaker application folder.

Hands-on examples

After installing the ScriptFire plug-in, open the Quick Start file that comes with the download
package. The Quick Start file demonstrates some of the most powerful ScriptFire features.
Take some time to explore the demo tour.

Dacons ScriptFire Manual 8



CHAPTER 1
ScriptFire Basics

This chapter enables you to use ScriptFire functions with FileMaker and explains the con-
cepts of ScriptFire tasks. In addition, you will learn about schedule and file formats which
are used for most ScriptFire functions. After reading this chapter advance to any of the
other chapters of this manual that provide the information you currently require.

The concept of ScriptFire tasks

When working with ScriptFire everything is a “task”. ScriptFire manages scripts that are
scheduled for future execution or events that are attached to windows or layouts as “tasks”.
When closing FileMaker, ScriptFire stores tasks automatically and restores them when File-
Maker is opened.

ScriptFire plug-in functions are used to install tasks. When installing a schedule-based task
you can define whether the task will be set up for one time execution or for repeating execu-
tion. In addition, you can set an absolute or relative point in time when this task will expire. If
you do not define an expiration point for a repeating task it will ‘live’ forever. Chapter 6

(— Managing Tasks, p. 38) provides information on managing ScriptFire tasks. This chapter
covers how to suspend, resume and remove installed tasks.

When reading Chapter 2 through Chapter 5 just keep in mind that the ScriptFire functions
discussed in these chapters install tasks that can be managed using other functions.

How to use ScriptFire functions

Since ScriptFire is a FileMaker plug-in, so-called external functions are used to trigger the
plug-in from a FileMaker database solution. They are called external functions because
these functions are provided by a plug-in and thus, they are not part of the actual FileMaker
application. In order to use the external functions provided by a plug-in it must always be in-
stalled and enabled in the FileMaker application preferences.

To access external functions provided by installed plug-ins the FileMaker calculation editor
is used. FileMaker shows this dialog whenever a calculation has to be defined (e.g. for cal-
culated fields, validation calculations etc). In most cases you will trigger ScriptFire functions
from a script. The easiest way to perform an external function call from a script is to add the
script step Set Field to your script.

Dacons ScriptFire Manual 9



Next, you specify the target field which will contain the result of the operation. The result of
ScriptFire operations is a simple result code which tells you if a function could be executed
successfully or if errors occurred. Therefore, you should setup a global text field in your so-
lution and call it Result. Specify the field Result as target field of the calculation.

# 5et Field [Test File: Result]

Script Step Options
E Specify target field € Specify... )

Calculated result: € Specify... 3

Set Field command in ScriptMaker

Click the Specify button (the second Specify button in FileMaker 7 and 8) to open the calcu-
lation editor.

As mentioned earlier plug-in functions can also be triggered from other places than the
ScriptMaker. To trigger a ScriptFire function from a field validation calculation (e.g. to trigger
a script that checks user input) open the calculation editor from the field setup dialog. In any
case you start working with the plug-in by opening the calculation editor of FileMaker.

In the top right corner of the calculation editor dialog you find a drop-down menu called
View. Change to the section External functions. All ScriptFire functions are listed in the sec-
tion ScriptFire. If you have additional plug-ins installed you might have to scroll down to the
ScriptFire section of the list. If the ScriptFire functions do not appear in the list, the plug-in is
not installed correctly or it is disabled in the FileMaker application preferences. In this case
leave the calculation editor and check that ScriptFire is installed as described earlier and
that it is enabled in the FileMaker application preferences.

Operators View: “External functions m
| ? |1 T | e
— + SFire_AddCloseTask( taskName; {f...
=l ot | > : SFire_AddLayoutTask( taskMName; ...
e < | SFire_AddOpenTask( taskName; fi...
| L J S ] = | SFire_AddScriptTask( taskName; 5...
I.T.H T | = | SFire_AddShutdownTask( taskNa... m
s — and SFire_AddSleepTask( taskName; {...
or SFire_AddWindowTas ki raskName._..
xar . SFire_Flashicon( {timeout}; {contr... .
not v SFire_GetLastResultCode v

ScriptFire functions in the Calculation Editor

Double-click on the ScriptFire function in the list which you would like to use. Next the pa-
rameters of the selected function have to be specified.

Dacons ScriptFire Manual 10



Function parameters

In order to tell the ScriptFire plug-in what it should do when the function is triggered, its pa-
rameters need to be specified. Parameters tell ScriptFire which script to trigger or which file
to open, for example. Most ScriptFire functions have several parameters.

FileMaker 7 and 8:

After copying a function to the text box of the calculation editor, FileMaker 7 and 8 will show
the name of the plug-in function that has been selected and a text label for each parameter
of this function.

The following example shows the ScriptFire function SFire_AddScriptTask that has been
added to the calculation editor:

SFire_AddScriptTask( taskName; script; {scriptParameter};
{TileLocation}; {FfileAccount}; {filePassword}; {schedule};
{timeout}; {taskState} )

FileMaker 5.x and 6:

When working with FileMaker 5.x or 6 you will notice that these versions of FileMaker do
not support parameter labels. After copying a ScriptFire function to the calculation editor
you will always see a single label that represents all parameters of the selected function

External ( "SFire-AddScriptTask'; parameter )

Under FileMaker 5.x and 6 the parameter label will be replaced by different parameter val-
ues. Parameters are passed as concatenated text, with each required parameter value
separated by a pipe character ().

To type the pipe character (“|’) on an US-keyboard press Shift + "\”. The location of the pipe
key can be different if you are using another keyboard layout (e.g. French or German).
However, in most cases you will find the pipe character printed on one of the keys. Some-

times the vertical line is shown as two small lines, almost like a colon (*;”). This does not
make any different since the character you type will always look like “|”.

As seen earlier the ScriptFire function SFire_AddScriptTask has nine parameters. Since
FileMaker 5.x and 6 protect files only by a password the fileAccount parameter is not
available under FileMaker 5.x and 6. Thus, the function SFire_AddScriptTask has only eight
parameters on these FileMaker platforms.

To pass a value for each of the parameter to FileMaker 5.x or FileMaker 6 format the func-
tion call in the calculation editor as follows:

External ( "SFire-AddScriptTask™;

taskName & """ &
script & """ &
scriptParameter & "|" &
fileLocation & """ &
filePassword & """ &

Dacons ScriptFire Manual 11



schedule &
timeout R
taskState )}

Note that each parameter like taskName and script represents a text value. Thus, a pa-
rameter value has to be the name of the text field or a text value itself. If it is a text value,
the parameter must be enclosed in quotation marks (**value™). The example above as-
sumes that the parameters taskName, script etc. have been defined as text fields in the
file.

Important: Ensure that you do not enclose space characters before or after the pipe separa-
tors. Always use “|” as separator, neither “|” nor “| “. Unneeded space characters will be
considered as part of a parameter by the plug-in which can result in invalid function calls.

It is recommended that you format the function call as shown above. One line is used for
each parameter. This gives a much better overview than a single line of text. However, the
plug-in does not require you to format function calls this way.

Required and optional parameters

Most functions have some parameters that are required and some that are optional. When
invoking a ScriptFire function you have to pass a value for all required parameters. Optional
parameters can be skipped. If no value is passed to the plug-in for an optional parameter
the default value for this parameter will be used. You will learn about default values later
when specific plug-in functions are discussed.

Mandatory parameters are listed in the beginning and optional parameters are listed at the
end of a function call. This allows you to omit optional parameters which you would not like
to use in your function call.

FileMaker 7 and 8:

After copying a function to the calculation editor under FileMaker 7 or 8 you will see optional
parameters enclosed in curly braces “{ }". To skip an optional parameter use an empty text
value represented by two quotation marks in the text editor “”. To skip all optional parame-
ters from the ScriptFire function AddScriptTask format the function call as follows:

SFire_AddScriptTask( taskName; script; "; "; "; ""; " ", ")

The labels taskName and script represent text values that are passed to the plug-in for
these parameters.

FileMaker 5.x and 6:

When working with FileMaker 5.x or 6 optional parameters can also be skipped by passing
empty text valued to the plug-in. The following example skips scriptParameter as one of
the optional function parameters:

Dacons ScriptFire Manual 12



External ( "SFire-AddScriptTask';
taskName & """ &
script &

R0

FfilelLocation
FilePassword
schedule
timeout
taskState

\/ R0 R0 Ro Ro Ro
Ro R0 Ro Ro Ro

Note that the pipe separator (“|”) is not omitted for the skipped parameter. So if all parame-
ters except for the last are to be skipped the function call would look as follows:

External ( "SFire-AddScriptTask';

taskName & """ &
script & "|" &
& """ &
& """ &
& "|I" &
& """ &
& """ &
taskState )

Of course, the function call can also be formatted like this:

External ('SFire-AddScriptTask';
taskName & "'|" & script & "|1I11]" & taskState )

FileMaker 5.x and 6 simplify the handling of optional parameters with the following rule:
Optional parameters at the end of a function call can be skipped. In such a case the pipe
separators (“|") can be omitted as well. So if all optional parameters — including the last one
— of the function AddScriptTask are to be skipped the function call would look as follows:

External ( "SFire-AddScriptTask'; taskName & '"|" & script )

Throughout this manual ScriptFire functions will be formatted in the FileMaker 7 and 8 style.
If you are not sure how to format a function call under FileMaker 5.x and 6 please refer to
the example above.

Result codes

Most plug-in functions that are called return a result code and a short description. The result
code indicates if the plug-in function succeeded or failed. If it failed the code also provides
details about the reason. You can evaluate result codes with a FileMaker script and perform
certain activities (e.g. show an error message to the user).

The following table lists all result codes returned by the plug-in.

Dacons ScriptFire Manual 13



000 “OK” (plug-in function succeeded)

-001 "Internal error" (contact the Dacons Support at www.dacons.net/support if you
receive this error code)

-002 "Incorrect parameter" (ensure that all parameters of the function you invoke are
set and formatted according to the specifications)

-003 "Task not usable, schedule expired” (defined schedule is in the past) or “Task not
usable, file location not applicable” (the specified file location cannot be used on
the current operating system)

-004 "File not found" (the file indicated in the function call could not be found)

-005 "Script not found" (the script indicated in the function call could not be found)

-006 "Task not found" (the task indicated in the function call could not be found)

-007 "Task event expired" (the task to be executed already expired)

-008 "System does not support power management" (the current system cannot be set
to sleep or shut down using ScriptFire)

-009 “No script is executing” (generated by SFire_GetScriptParameter if used in a
calculation that is not invoked from a script)

-010 “Authorization failed” (Database file could not be opened because user-
name/password authorization to open the file failed)

-011 “Incorrect registration data; visit www.dacons.net/support for help”

-012 “Load environment failed” (plug-in preferences could not be read)

-013 “Log file not opened” (ensure that the log file is not opened by another application
and that log settings are correct)

-014 “Log file corrupted” (plug-in will erase the log file)

-015 “End of log file reached”

-016 “Log data overflows” (generated by SFire_ReadLog if the log file contents re-

turned had to be truncated due to limitations)

Schedule formats

ScriptFire provides tasks that enable you to invoke scripts or open and close FileMaker da-
tabases based on a schedule. A schedule is passed to the plug-in by a parameter called
schedule. This section introduces all schedule formats that are supported by ScriptFire.

Date format:

The schedule parameter of ScriptFire functions requires you to pass date and time values
in a specified format to the plug-in. This format is the same on all platforms. It is independ-
ent from the system’s date and time format settings.

Dates are formatted according to the MM-DD-YYYY pattern (MM = month, DD = day,
YYYY = year). Note that a dash character (“-“) is used as separator. The month (MM) can
be indicated using the number of the month or the first three characters of the English
month’s name.

Dacons ScriptFire Manual 14



Examples:
01-02-2006 (January 2™, 2006)
Jan-02-2006 (January 2", 2006)

Time format:
Time values are specified in the 24-hour format according to the familiar HH:MM:SS pattern
(HH = hours 0-23, MM = minutes 00-59, SS = seconds 00-59).

Examples:
06:12:45
23:55:02

If time is used to indicate an interval or a relative point in time instead of a indicating the
time of a day a greater maximum greater than 23 is allowed for the hours section (HH).

One time absolute schedules:

Use one time absolute schedule to invoke a task once at a specific point in future which you
define independently from the current point in time. To indicate one time schedules to
ScriptFire the prefix “once:” used.

Example:
once: 01-02-2006 13:15:00
(task is scheduled for one time execution on January 2", 2006 at quarter past 1 pm)

One time relative schedules:

Use one time relative schedule to invoke a task once at a specific point in future which you
define relatively to the current point in time. To indicate one time schedules to ScriptFire the
prefix “once:” used. For relative one time schedules this prefix is followed by a plus charac-
ter (“+”) and a period in HH:MM:SS format. Hours (HH) can be greater than 23.

Examples:
once: +00:00:30 (in 30 seconds)
once: +48:05:00 (in 48 hours and 5 minutes)

Simple interval schedules:

Interval schedules invoke tasks regularly every couple of seconds, minutes or hours.
ScriptFire also supports daily, weekly, monthly and yearly interval schedules. The simplest
type of interval schedules use the prefix “interval :” followed by an interval period in
HH:MM:SS format. Hours (HH) can be greater than 23. Use simple interval schedules to in-
voke a task every couple of seconds, minutes, or hours.

Examples:
interval: 00:00:30 (every 30 seconds)
interval: 12:05:00 (every 12 hours and 5 minutes)

Daily interval schedules:
To invoke a task once per day use a daily interval schedule. Daily interval schedules are in-

Dacons ScriptFire Manual 15



dicated by the prefix “dai ly:” followed by the time of the day indicated in HH:MM:SS for-
mat (HH: 0-23).

Examples:
dailly: 12:00:00 (every day at noon)
daily: 20:00:05 (every day at 5 seconds past 8 pm)

Weekly interval schedules:

Use weekly interval schedules to invoke a task once per week. Weekly interval schedules
are indicated by the prefix “weekly :” followed by an abbreviation of the day of the week
this schedule refers to (“Mo”, “Tu”, “We”, “Th”, “Fr”, “Sa” or “Su”) and the time in HH:MM:SS
format indicating the time of the day the task is to be triggered.

Examples:
weekly: Mo 12:00:00 (every Monday at noon)
weekly: Fr 18:15:00 (every Friday at quarter past 6 pm)

Monthly interval schedules:

This type of interval schedules invokes a task once per month. Monthly interval schedules
are indicated by the prefix “monthly:” followed by a number indicating the day of the
month and the time of the day in HH:MM:SS format.

Examples:
monthly: 1 09:00:00 (every first day of a month at 9 am)
monthly: 15 17:00:00  (every 15" of a month at 5 pm)

Note: Use 31 to refer to the last day of a month. Even if a month has only 30, 29 or even 28
days ScriptFire will invoke a task triggered for the 31% on the last day of that month.

Yearly interval schedules:

Use this type of interval schedules to invoke a task once per year. Yearly interval schedules
are indicated by the prefix “yearly:” followed by a number or an abbreviation indicating
the month, another number indicating the day of the month and a time in HH:MM:SS format
specifying the time of the day task is to be triggered.

Examples:
yearly: Dec 25 17:00:00 (every December 25" at 5 pm)
yearly: 1 1 09:00:00 (every January 1% at 9 am)

Additional schedule options:

Every schedule except for schedules of the type “once” can be amended by “start:”,
“‘expire:” and “repeat:” commands that control when a schedule becomes active, when
it becomes inactive and how often it is triggered at maximum. These commands are op-
tional, of course.

To control that a schedule should not be active before a certain point in time use the
“start:” command right after your schedule followed by a date and time indication.

Dacons ScriptFire Manual 16



Example:
weekly: Mo 12:00:00 start: Jan-16-2006 12:00:00
(every Monday at noon starting January 16™, 2006 at noon)

To deactivate a schedule at a certain point in time us the “expire:” command just like the
‘start:” command.

Example:
weekly: Mo 12:00:00 expire: Jan-01-2007 00:00:00
(every Monday at noon ending January 1%, 2007)

The “repeat:” command enables you to define a maximum number of task invocations for
a schedule. When the maximum is reached the schedule will be deactivated automatically.

Example:
weekly: Mo 12:00:00 repeat: 5
(every Monday at noon, ending after 5 repetitions)

” o«

The commands discussed (“start:”, “expire:” and “repeat:”) can be combined within
the same schedule to set a start and end point and and/or define a maximum number of
repetitions.

Example:
weekly: Mo 12:00:00 start: Jan-16-2006 12:00:00
expire: Jan-01-2007 00:00:00 repeat: 5

In this example you will notice that the repeat condition will be reached before the end con-
dition since there are more than five Mondays between January 16", 2006 and January 1%,
2007. When combining “expire:” and “repeat:” conditions within the same schedule
ScriptFire will consider whichever command is reached first. So in this case the schedule
would be deactivated after 5 repetitions.

Please note that all keywords used in schedules (schedule types, month and week day
names etc) are case-insensitive. So the following two examples yield the same result.

weekly: mo 12:00:00
WEEKLY: MO 12:00:00

File location formats

ScriptFire functions that schedule scripts or install events are related to certain FileMaker
files. To tell ScriptFire the location of the file that is to be triggered for a task the filelLo-
cation parameter is used.

Just like the File Reference dialog of FileMaker 7 and 8 the ScriptFire fileLocation pa-
rameter supports several file location formats that enable you to specify absolute, relative
and even network file locations. The following file location formats are not only supported by

Dacons ScriptFire Manual 17



the FileMaker 7 and 8 version of ScriptFire but also by the version of the plug-in that works
with FileMaker 5.x and 6.

Relative file location:
This file location format enables you to reference a file relatively to the current FileMaker
file. Format the FileLocation parameter according to the following pattern:

Ffile:fileName
file:directoryName/filename
Ffile:../directoryName/filename

The first pattern i le: Fi lename refers to file that reside in the same directory as the cur-
rent FileMaker file. To reference a file relatively to the current file that is located in a sub-
directory use the second pattern file:directoryName/Ffilename. You can specify a
path of several directories, of course. The point at upper directories in a relative file location
use “../” as demonstrated by the third pattern File: ../directoryName/filename.

Examples:

file:MyDatabase. fp7

(references the file “MyDatabase.fp7” that is located in the same directory as the current
FileMaker file)

file:../Business/MyDatabase.fp7

(references the file “MyDatabase.fp7” that is located in the directory “Business” which is lo-
cated in the directory that resides one level above the directory that contains the current
FileMaker file)

Absolute Mac file location:

This file location format lets you reference a file on a Mac OS system based on an absolute
path that starts at the root level of the file system. Format absolute Mac paths according to
the following pattern:

Filemac:/volumeName/directoryName/fileName

Note that the path starts with a forward slash (“/”).
This file location type is ignored by ScriptFire under Windows.

Examples:

filemac:/Harddrive/Business/MyDatabase.fp7

(references the file “MyDatabase.fp7” that is located in the directory “Business” which re-
sides on the top level of the volume “Harddrive”)

Absolute Windows file location:

This file location format lets you reference a file on a Windows system based on an abso-
lute path that starts at the root level of the file system. Format absolute Windows paths ac-
cording to the following pattern:

Filewin:/driveletter:/directoryName/fileName

Dacons ScriptFire Manual 18



Note that the path starts with a forward slash (/") and that forward slashes are used instead
of backslashes (“\") to separate directories.
This file location type is ignored by ScriptFire under Mac OS.

Examples:

Ffilewin:/c:/Business/Tests/MyDatabase . fp7

(references the file “MyDatabase.fp7” that is located in the directory “Tests” which resides in
the directory “Business” that is located on the root level of the volume “C:”)

Windows network file location:
To reference a file that can be accessed via Windows file sharing use this file location type.
Format Windows network paths according to the following pattern:

Ffilewin://computerName/shareName/directoryName/fileName

Note that the path starts with a double slash (“//”) followed by the name of computer that
shares the volume (“shareName”) via Windows file sharing that contains the target file.

Windows network file locations are ignored by ScriptFire on Mac OS.

Examples:

filewin://Fileserver/Business/MyDatabase.fp7

(references the file “MyDatabase.fp7” that is located in a directory shared via Windows file
sharing under the name “Business” on the computer named “Fileserver”)

FileMaker network file location:
The FileMaker network file location format lets you specify locations of files that are shared
by FileMaker host via TCP/IP. Use the following pattern to reference such files:

fmnet:/hostlPAddress/fileName

Note that the path starts with a forward slash (/). To use this file location type under File-
Maker 5.x and 6 ensure that sharing via TCP/IP is enabled in the application preferences of
both host and client. FileMaker 7 and 8 always use TCP/IP for sharing.

Examples:

fmnet:/192.168.0.1/MyDatabase . fp7

(references the file “MyDatabase.fp7” that is shared via FileMaker TCP/IP sharing by the
host with the IP address 192.168.0.1)

Object name location:

ScriptFire enables you to reference any open file by its file name or by one of its window ti-
tles (FileMaker 7 and 8 only). Use this file location type to point at files that are currently
open in FileMaker. Use the following pattern for this location type:

fmname : filename
ftmname :windowName (FileMaker 7 and 8 only)

Dacons ScriptFire Manual 19



Examples:
fmname :MyDatabase . fp7
(references the file “MyDatabase.fp7” that is currently open in FileMaker)

fmname:Customers
(references the FileMaker file that shows the window with the title “Customers”)

Multiple file locations:

You can set several alternative file locations in search order using the fileLocation pa-
rameter and separate them by semicolons (“;”). When several file locations are defined
ScriptFire will try to locate the target file based on the first location. If the file does not exist

it tries the second location and so forth.

Example:

fmnet:/192.168.0.1/MyDatabase.fp7;
filewin:/c:/Business/MyDatabase.fp7;
Filemac:/Harddrive/Business/MyDatabase . fp7

In the example above ScriptFire will first try to locate the file “MyDatabase.fp7” on the File-
Maker network by contacting the host 192.168.0.1. If this operation is not successful (e.g.
network connection, host or shared file is not available) ScriptFire will try to open the file
“MyDatabase.fp7” locally according to the absolute Windows file location specified. If this
does not work, either (e.g. file is not available or current system is not Windows) ScriptFire
tries the third file location that is specified. Only if the last location does not point to the file
“‘MyDatabase.fp7” as well the function that uses this file location value will fail.

Working with relative location types:

Please note that ScriptFire resolves relative file location types such as File:filename
and fmname: Fi lename to absolute file locations internally. If using these location types
ensure that the location of the specified file does not change until ScriptFire triggers it (e.g.
the moment a schedule invokes a script).

Dacons ScriptFire Manual 20



CHAPTER 2
Schedule-Based Script Tasks

ScriptFire enables you to trigger scripts based on any type of schedule you have seen in
Chapter 1. You can trigger scripts based on secondly, minutely, hourly, daily, weekly,
monthly and even yearly schedules to perform database backups, trigger consolidations or
generate notifications.

Schedule script tasks

To schedule FileMaker scripts with ScriptFire the plug-in function SFire_AddScriptTask is
used. It adds a script as a scheduled task to the ScriptFire scheduler. ScriptFire will trigger
the script according to the schedule that has been defined. To invoke the function
SFire_AddScriptTask trigger it from a script that is attached to a button or defined as startup
script for your solution. Within such a script use the Set Field script step to invoke
SFire_AddScriptTask as described below.

Syntax:

SFire_AddScriptTask( taskName; script; {scriptParameter};
{FileLocation}; {FfileAccount}; {filePassword}; {schedule};
{timeout}; {taskState} )

Parameters:

taskName — This parameter is required. It specifies a unique name of the task to be added
to the scheduler. The task name can be used later to manage the task (e.g. change or dis-
able it). To update the settings of an existing task, simply use its name when invoking this
function. This parameter is case-sensitive (“Task1” and “TASK1” refer to two different
tasks).

script — This parameter is required. It specified the name of the script that is to be in-
voked. This parameter is case-insensitive.

{scriptParameter} — This parameter is optional. Use it to pass additional information to
the script that will be triggered. When the script is running you can retrieve this information
using the function Get(ScriptParameter) under FileMaker 7 and 8. Since FileMaker 5.x and
6 do not support script parameters natively you can use the ScriptFire function
SFire_GetScriptParameter to retrieve the parameter values on these FileMaker platforms.

Dacons ScriptFire Manual 21



{fileLocation} — This parameter is optional. It specifies the location of the file that con-
tains the script to be invoked. In the moment the script is to be triggered ScriptFire checks if
the specified file is already open. If it is not open ScriptFire will try to open it based on the
file location specified by this parameter. You can leave this parameter empty to point to the
current file. To define a file location all location types shown in Chapter 1 are supported.
Please note that FileMaker must be running for ScriptFire to open database files.

{fileAccount} — This parameter is optional and supported under FileMaker 7 and 8 only.
Use it to specify an account for the file that contains the script to be triggered in case that
ScriptFire might have to open it before invoking the specified script. If no account has been
specified and ScriptFire needs to open the target file it will use the default account.

{filePassword} — This parameter is optional. Use it to specify the password of the target
file in case it has to be opened. Like all other settings, ScriptFire stores passwords in an
encrypted data format.

{schedule} — This parameter is optional. Use it to specify the schedule for a script task.
The schedule can be based on any of the schedule types described in Chapter 1. By de-
fault the schedule ""once :+0:00:00" is used which means that the script will be triggered
immediately if no value for this parameter is specified.

{timeout} - This parameter is optional. FileMaker can only trigger scripts when it is not
busy. FileMaker is busy when another script is running, a modal dialog window is open (e.g.
ScriptMaker or Define Database dialog) or other activities are performed (e.g. exporting re-
cords). This parameter lets you specify a maximum period of time in HH:MM:SS format
which ScriptFire waits if FileMaker is busy in the moment the script is to be invoked. If File-
Maker becomes idle before the timeout ends ScriptFire will trigger the specified script. By
default ScriptFire waits infinitely until FileMaker becomes idle to trigger a scheduled task.
Timeouts are also considered when the task is blocked (SFire_SetTasksBlocking) at the
moment it is to be invoked.

{taskState} — This parameter is optional. Use it to specify the initial state of the script
task. By default the task state is set to "‘enabled’ which means that the task will be ac-
tive. To disable a task set this parameter to the value "'disabled".

Schedule script example

In this example a backup script will be scheduled for daily execution. To ensure that the
backup is triggered even if the database is not open the file location, account and password
will be specified so that ScriptFire can open the file to trigger the backup script if necessary.

The Set Field script steps that installs the ScriptFire task for this example contains the fol-
lowing plug-in function call (placed in the Calculation Editor):

SFire_AddScriptTask(
"Backup Task™;
"Daily Backup';

Dacons ScriptFire Manual 22



"fmnet:/192.168.0.10/Customers.fp7';
"Admin®';

"f00123";

"daily: 01:30:00";

"enabled" )

In detail this means that the task that is installed can be referenced later under the name
"Backup Task' (e.g. to remove it at a later point). The script that will be triggered by
ScriptFire is called “Daily Backup”. A script parameter is not needed for the script
"Daily Backup" so the third parameter is left empty for this example.

If the target database file is not already open when the script is supposed to be invoked
ScriptFire will look for it on the FileMaker network and open it. The target file is shared by a
FileMaker host with the IP address 192.168.0.10. The name of the database file is
"Customers.fp7". To open the file an account and password is required. The account to
be used is called ""Admin" and the password is ""f00123"".

The schedule used for this example means that the script "'Daily Backup' will be trig-
gered every day at 1:30 am (*"daily: 01:30:00"). A timeout is not set because the
backup should be triggered at any later point if FileMaker is not idle at 1:30 am.

Finally, the task state is set to "*enabled™ since this script task should be active from the
moment it is installed. Since ""enabled" is the default value of the taskState parameter

this value could also be skipped by using an empty value """.

Chapter 6 (— Managing Tasks, p. 38) provides information on how to retrieve settings of
installed tasks and manage then (e.g. disable or enable tasks).

Trigger scripts immediately

The plug-in function SFire_AddScriptTask can not only be used to schedule scripts.
To trigger a script for immediate execution from a calculation leave the schedule parameter
empty so that the default value ""once:+0:00:00" is used.

Example:
SFire_AddScriptTask( "Validation'; "Validation Script";

LOTTS TS T TTSIOTTSLIOTTY)

This enables you to attach scripts to events like exiting fields or accessing records.
Script tasks which are executed immediately (with empty schedule or schedule set to
"once:+0:00:00") will not be saved in the ScriptFire scheduler. Such tasks expire di-
rectly after execution.

For more information, please review Record and field events (p. 32) in Chapter 4
(— Event-Based Script Tasks).

Dacons ScriptFire Manual 23



CHAPTER 3
Open and Close File Tasks

ScriptFire enables you to schedule tasks that open or close database files. Use the open
task type if you do not intent to invoke a script from a file but just open it (once or regularly)
at a specific point in time.

If a database should be closed at a specific point in time the close task type comes handy.
Unlike a script task that would first open a database file to invoke a script that closes it in
such situations, the close task type does not take any actions if the specified file is already
closed.

Schedule open file tasks

To open a FileMaker database file once or regularly at a specific point in time the ScriptFire
plug-in function SFire_AddOpenTask is used. It adds a file open task to the ScriptFire
scheduler. ScriptFire will open the database file according to the schedule that has been
specified. To invoke the function SFire_ AddOpenTask trigger it from a script that is attached
to a button or defined as startup script for your solution. Within such a script use the Set
Field script step to invoke SFire_AddOpenTask as described below.

Syntax:
SFire_AddOpenTask( taskName; filelLocation; {fileAccount};
{fFilePassword}; {openType}; {schedule}; {timeout}; {taskState} )

Parameters:

taskName — This parameter is required. It specifies a unique name of the task to be added
to the scheduler. The task name can be used later to manage the task (e.g. change or dis-
able it). To update the settings of an existing task, simply use its name when invoking this
function. This parameter is case-sensitive (“Task1” and “TASK1” refer to two different
tasks).

fileLocation — This parameter is required. It specifies the location of the database file to
be opened. To define a file location all location types shown in Chapter 1 are supported.
Leave this parameter empty to refer to the current database file. Please note that FileMaker
must be running for ScriptFire to open database files. If alternative file locations are speci-
fied using this parameter ScriptFire will open the first database file it finds starting with the
first in the list.

Dacons ScriptFire Manual 24



{FileAccount} — This parameter is optional and supported under FileMaker 7 and 8 only.
Use it to specify an account for the database that is to be opened. If no account has been
specified ScriptFire will use the default account when opening the file.

{FilePassword} — This parameter is optional. Use it to specify the password of the target
file that is to be opened. Like all other settings, ScriptFire stores passwords in an encrypted
data format.

{openType} — This parameter is optional. It specifies whether the file should be opened
hidden or not. Hidden files are opened without a window. User can show the window of hid-
den files by selecting them in the Window menu. By default, ScriptFire uses the value
"Open Visible™ to open a database file with a window. To open a file hidden without a
window set this parameter to *'Open Hidden"'. Please note that FileMaker 5.x and 6 under
Windows do not support the hidden window state of database files. Instead, these File-
Maker versions show hidden database files as minimized icons.

{schedule} — This parameter is optional. Use it to specify the schedule for an open task.
The schedule can be based on any of the schedule types described in Chapter 1. By de-
fault the schedule ""once :+0:00:00" is used which means that the database file will be
opened immediately if no value for this parameter is specified.

{timeout} — This parameter is optional. FileMaker can only open database files when it is
not busy. FileMaker is busy when a script is running, a modal dialog window is open (e.g.
ScriptMaker or Define Database dialog) or other activities are performed (e.g. exporting re-
cords). This parameter lets you specify a maximum period of time in HH:MM:SS format
which ScriptFire waits if FileMaker is busy in the moment the database file is to be opened.
If FileMaker becomes idle before the timeout ends ScriptFire will open the specified file. By
default ScriptFire waits infinitely until FileMaker becomes idle to open scheduled database
files. Timeouts are also considered when the task is blocked (SFire_SetTasksBlocking) at
the moment it is to be invoked.

{taskState} — This parameter is optional. Use it to specify the initial state of the open
task. By default the task state is set to "‘enabled’ which means that the task will be ac-
tive. To disable a task set this parameter to the value "'disabled™.

Schedule open file example

In this example ScriptFire will be scheduled to open a database file every Monday morning
on the host computer that shares this file with other FileMaker users. By scheduling a file
open task the availability of the database file is ensured for all FileMaker clients who use it
for operations during office ours.

The Set Field script steps that installs the ScriptFire task for this example contains the fol-
lowing plug-in function call (placed in the Calculation Editor):

SFire_AddOpenTask(
"Open Database Task';
"fmwin:/c:/Project Databases/ProjectX.fp7";

Dacons ScriptFire Manual 25



"Admin';
"f00123";
"weekly: Mo 06:00:00";

"enabled" )

In detail this means that the task that is installed can be referenced later under the name
""Open Database Task™ (e.g.toremove it at a later point). The file to be opened is
named ProjectX.fp7. It is located in the Project Databases folder on the c-drive of
the local Windows file system.

To open the file an account and password is required. The account to be used is called
"Admin' and the password is ""fo0123"".

The schedule used for this example specifies that the database file will be opened every
Monday morning day at 6:00 am (""'weekly: Mo 06:00:00"). A timeout is not set be-
cause the database should be opened at any later point if FileMaker is not idle Mondays at
6:00 am.

Finally, the task state is set to "‘enabled™ since this open task should be active from the
moment it is installed. Since ""'enabled" is the default value of the taskState parameter

this value could also be skipped by using an empty value ****.

Schedule close file tasks

To close a FileMaker database file once or regularly at a specific point in time the ScriptFire
plug-in function SFire_AddCloseTask is used. It adds a file close task to the ScriptFire
scheduler. ScriptFire will close the database file according to the schedule that has been
specified. Unlike a script task that would first open a database file to invoke a script that
closes it in such situations, the close task type does not take any actions if the specified file
is already closed.

To invoke the function SFire_AddCloseTask trigger it from a script that is attached to a but-
ton or defined as startup script for your solution. Within such a script use the Set Field
script step to invoke SFire_AddCloseTask as described below.

Syntax:
SFire_AddCloseTask( taskName; fileLocation; {schedule};
{timeout}; {taskState} )

Parameters:

taskName — This parameter is required. It specifies a unique name of the task to be added
to the scheduler. The task name can be used later to manage the task (e.g. change or dis-
able it). To update the settings of an existing task, simply use its name when invoking this
function. This parameter is case-sensitive (“Task1” and “TASK1” refer to two different
tasks).

Dacons ScriptFire Manual 26



fileLocation — This parameter is required. It specifies the location of the database file to
be closed. To define a file location all location types shown in Chapter 1 are supported.
Leave this parameter empty to refer to the current database file. Use the location type
"fmname:"" to point at a specific window that is to be closed instead of the entire database
(FileMaker 7 and 8 only). If alternative file locations are specified using this parameter
ScriptFire will close the first database file (or window) it finds starting with the first in the list.

{schedule} — This parameter is optional. Use it to specify the schedule for a close task.
The schedule can be based on any of the schedule types described in Chapter 1. By de-
fault the schedule ""'once:+0:00:00" is used which means that the database file will be
closed immediately if no value for this parameter is specified.

{timeout} — This parameter is optional. FileMaker can only close database files when it is
not busy. FileMaker is busy when a script is running, a modal dialog window is open (e.g.
ScriptMaker or Define Database dialog) or other activities are performed (e.g. exporting re-
cords). This parameter lets you specify a maximum period of time in HH:MM:SS format
which ScriptFire waits if FileMaker is busy in the moment the database file is to be closed. If
FileMaker becomes idle before the timeout ends ScriptFire will close the specified file. By
default ScriptFire waits infinitely until FileMaker becomes idle to close scheduled database
files. Timeouts are also considered when the task is blocked (SFire_SetTasksBlocking) at
the moment it is to be invoked.

{taskState} — This parameter is optional. Use it to specify the initial state of the close
task. By default the task state is setto "‘enabled™ which means that the task will be ac-
tive. To disable a task set this parameter to the value "disabled™.

Schedule close file example

In this example ScriptFire will be scheduled to close a database file every Friday night (e.qg.
for security reasons).

The Set Field script steps that installs the ScriptFire task for this example contains the fol-
lowing plug-in function call (placed in the Calculation Editor):

SFire_AddCloseTask(

"Close Database Task™;

“fmwin:/c:/Project Databases/ProjectX.fp7";
"weekly: Fr 23:00:00";

"enabled" )

In detail this means that the task that is installed can be referenced later under the name
"Close Database Task™ (e.g.toremove it at a later point). The file to be closed is
named ProjectX.fp7. ltis located in the Project Databases folder on the c-drive of
the local Windows file system.

Dacons ScriptFire Manual 27



The schedule used for this example specifies that the database file will be closed every Fri-
day night at 11:00 pm (*"'weekly: Fr 23:00:00"). A timeout is not set because the da-
tabase should be closed at any later point if FileMaker is not idle Fridays at 11:00 pm.

Finally, the task state is set to ""enabled' since this close task should be active from the
moment it is installed. Since ""'enabled" is the default value of the taskState parameter
this value could also be skipped by using an empty value **.

Dacons ScriptFire Manual 28



CHAPTER 4
Event-Based Script Tasks

In addition to schedule-basked tasks that trigger scripts or open files at a specific point in
time, ScriptFire supports event-based script tasks. Event-based functionality is provided by
window and layout tasks.

Window tasks enable you to trigger a script when a specific window is activated. An activa-
tion event for window tasks is invoked whenever a specified window is shown or focused.
This can happen because of a script command or a user interaction.

Layout tasks provide the same functionality for FileMaker layouts. Use a layout task to trig-
ger a script whenever a specific layout is accessed (e.g. by the user from the layout menu
or by a script).

Please note that both window and layout tasks are only supported for FileMaker 7 and later.

Window tasks

To install a window task for FileMaker using ScriptFire the plug-in function
SFire_AddWindowTask is used. The task installed by this function ensures that a specific
script is triggered whenever a specified window comes to front. To invoke the function
SFire_AddWindowTask trigger it from a script that is attached to a button or defined as
startup script for your solution. Within such a script use the Set Field script step to invoke
SFire_AddWindowTask as described below.

Syntax:
SFire_AddWindowTask( taskName; window; script;
{scriptParameter}; {fileLocation}; {taskState} )

Parameters:

taskName — This parameter is required. It specifies a unique name of the task to be added.
The task name can be used later to manage the task (e.g. change or disable it). To update
the settings of an existing task, simply use its name when invoking this function. This pa-
rameter is case-sensitive (“Task1” and “TASK1” refer to two different tasks).

Dacons ScriptFire Manual 29



window — This parameter is required. It specifies the title of the window to be observed. To
observe all windows of the specified file(s) use the value “-All Windows” for this parameter.
This parameter is case-insensitive.

script - This parameter is required. It specified the name of the script that is to be in-
voked. This parameter is case-insensitive.

{scriptParameter} — This parameter is optional. Use it to pass additional information to
the script that will be triggered. When the script is running you can retrieve this information
using the function Get(ScriptParameter) under FileMaker 7 and 8.

{fileLocation} — This parameter is optional. It specifies the file(s) that will be observed
for the defined window. The handling of this parameter is a little different compared to
schedule-based tasks. For event-based tasks ScriptFire considers all file locations indicated
by this parameter. This means that file locations set by this parameter are not alternatives —
every file will be observed for the specified window to become active. Of course, file loca-
tion types that are not supported by a specific platform (e.g. filemac-type on Windows) will
be ignored. In addition, the fmname-type is not supported by this function. Leave this pa-
rameter empty to point at the current file.

{taskState} — This parameter is optional. Use it to specify the initial state of the task. By
default the task state is set to ""enabled' which means that the task will be active. To
disable a task set this parameter to the value "disabled".

Window task example

The following example installs a window task that observes a specific database file for a de-
fined window to be activated.

The Set Field script steps that installs the ScriptFire task for this example contains the fol-
lowing plug-in function call (placed in the Calculation Editor):

SFire_AddwWindowTask(
"Window Task™;
"Contacts"';

""Set Contacts Focus'';

“fmwin:/c:/Business/Customers.fp7";
"enabled" )

In detail this means that the task installed can be referenced later under the name
"Window Task' (e.g. to remove it at a later point). The title of the window that will be ob-
served is ""Contacts’. Whenever this window is activated the script with the name *""Set
Contacts Focus™ will be invoked. A script parameter is not specified.

ScriptFire will observe a specific database file for this event — it is called Customers. fp7.
Finally, the task state is set to ""enabled™ since this window task should be active from

Dacons ScriptFire Manual 30



the moment it is installed. Since ""'enabled" is the default value of the taskState pa-

rameter this value could also be skipped by using an empty value **".

Layout tasks

To install a layout task for FileMaker using ScriptFire the plug-in function
SFire_AddLayoutTask is used. The task installed by this function ensures that a specific
script is triggered whenever a specified layout is accessed. To invoke the function

SFire _ AddLayoutTask trigger it from a script that is attached to a button or defined as
startup script for your solution. Within such a script use the Set Field script step to invoke
SFire_ AddLayoutTask as described below.

Syntax:
SFire_AddLayoutTask( taskName; layout; window; script;
{scriptParameter}; {filelLocation}; {taskState} )

Parameters:

taskName — This parameter is required. It specifies a unique name of the task to be added.
The task name can be used later to manage the task (e.g. change or disable it). To update
the settings of an existing task, simply use its name when invoking this function. This pa-
rameter is case-sensitive (“Task1” and “TASK1” refer to two different tasks).

layout — This parameter is required. It specifies the name of the layout to be observed. To
observe all layouts use the value “-All Layouts” for this parameter. This parameter is case-
insensitive.

window — This parameter is required. Use it if ScriptFire is supposed to only observe a
specific window for layout changes. To observe all windows of the specified file(s) use the
value “-All Windows” for this parameter. This parameter is case-insensitive.

script — This parameter is required. It specified the name of the script that is to be in-
voked. This parameter is case-insensitive.

{scriptParameter} — This parameter is optional. Use it to pass additional information to
the script that will be triggered. When the script is running you can retrieve this information
using the function Get(ScriptParameter) under FileMaker 7 and 8.

{fileLocation} — This parameter is optional. It specifies the file(s) that will be observed.
For event-based tasks ScriptFire considers all file locations indicated by this parameter.
This means that file locations set by this parameter are not alternatives — every file will be
observed for the specified layout to become active. Of course, file location types that are
not supported by a specific platform (e.g. filemac-type on Windows) will be ignored. In addi-
tion, the fmname-type is not supported by this function. Leave this parameter empty to point
at the current file.

{taskState} — This parameter is optional. Use it to specify the initial state of the task. By
default the task state is setto "‘enabled™ which means that the task will be active. To
disable a task set this parameter to the value "disabled™.

Dacons ScriptFire Manual 31



Layout task example

The following example installs a layout task that observes a specific database file for a de-
fined layout to be activated.

The Set Field script steps that installs the ScriptFire task for this example contains the fol-
lowing plug-in function call (placed in the Calculation Editor):

SFire_AddLayoutTask(
"Layout Task™;
"Invoices';

"-All Windows";
"Update Invoices";

"fmwin:/c:/Business/Customers.fp7";
"enabled" )

In detail this means that the task installed can be referenced later under the name
"Layout Task" (e.g. to remove it at a later point). The layout to be observed is named
"Invoices". All windows of the database that is specified in the next step will be observed
for this layout to become active. This is achieved by setting the window parameter to the
value ""-All Windows" . The script to be invoked when the specified layout is entered is
called "Update Invoices".This scriptis triggered without a script parameter.

ScriptFire will observe the database file Customers. fp7 for this layout task. Finally, the
task state is set to ""enabled" since this layout task should be active from the moment it is
installed. Since ""enabled" is the default value of the taskState parameter this value

could also be skipped by using an empty value """".

Record and field events

Window and layout tasks are installed once and managed by ScriptFire independently of
FileMaker.

For other events such as exiting fields or records FileMaker provides calculations that can
be used in combination with ScriptFire to invoke scripts. To trigger a script immediately from
a calculation the ScriptFire function SFire_AddScriptTask (introduced in Chapter 2) is
triggered with an empty schedule parameter so that the default schedule
"*once:+0:00:00" is used.

The following shows how to invoke scripts when users exit a field, create, view or delete a
record.

Invoke a script when exiting a field (simple field validation):

To invoke a script that validates user input of a field a script is triggered from the Validation
Calculation of that field. To specify the Validation Calculation for a field open the Define Da-
tabase dialog, navigate to the table that contains the field, select the field and click the Op-

Dacons ScriptFire Manual 32



tions button. In the following dialog click on the Validation tab and enable the checkbox
Validated by calculation.

For example, to validate the input of a field called Emai I the ScriptFire function
SFire_AddScriptTask would be placed inside this field’s Validation Calculation as fol-
lows:

SFire_AddScriptTask( "FieldValidationSimple™;
Validate Email Address'; ''"; ''''; "'; "' " " ")

This would result in the script Validate Email Address to be invoked every time the
user leaves the field Email after changing its value. If the validation of the field Email
fails the script Validate Email Address could move the input cursor back into the
field (script step Go to Field) and inform the user (e.g. via a text label below the field) that
the input has to be corrected.

Under FileMaker 6 and earlier this simple approach triggers the validation script when the
user leaves the field by clicking or by using the Tab key. Under FileMaker 7 and 8 this sim-
ple validation method only works for clicking. To ensure that users cannot bypass a valida-
tion script under FileMaker 7 and 8 use the advanced field validation approach described
hereafter.

Invoke a script when exiting a field (adv. field validation, FileMaker 7 and 8 only):

To ensure that a validation script is triggered under FileMaker 7 and 8 no matter which way
users leave a field (by clicking or using a control key such as Tab or Return) use the field’'s
Auto-Enter Calculation instead of its Validation Calculation. In the Define Database dialog
select the field and click the Options button. On the Auto-Enter tab enable the checkbox
Calculated value and specify the calculation according to the following example:

Email &
Left( SFire_AddScriptTask( "FieldvalidationAdvanced";
llVaIidate Email Addressll; Illl; Illl; Illl; Illl; Illl; Illl; Illl); 0 )

This ensures that the actual value of the field Email will not be changed by the calcula-
tion. However, the script Validate Email Address is invoked when leaving the field
after updating its value. The script may then change the field value, notify the user or take
other actions.

FileMaker 7 and 8 support simple and advanced field validation as shown here also for
global fields.

Invoke a script when creating a record:

To have a script triggered automatically when a new record is created set up a Result field
(or any other name you choose) of type Text (not global) in the target table and place a
ScriptFire function call like the following inside the field’s Auto-Enter Calculation:

SFire_AddScriptTask( ""RecordCreation'; "Record Creation Script';

LTS M TR TTSLIOTTSSOTM)

Dacons ScriptFire Manual 33



Invoke a script when viewing a record (FileMaker 7 and 8 only):
To invoke a script when a record is viewed (in any type of layout including List and Table
layouts) make use of the FileMaker Access Privileges under FileMaker 7 and 8 as follows.

In the Define Accounts & Privileges dialog switch to the Privilege Sets tab and create a new
privilege set that will be assigned to all user accounts. Alternatively, you may also modify an
existing set that is already assigned to user accounts. In the Edit Privilege Set dialog
choose Custom privileges in the Records pull-down field. The Custom Record Privileges
dialog pops up. Select your target table from the list and choose the entry limited from the
View pull-down field; the Calculation Editor is shown. Insert a calculation according to the
following example:

1&
Left( SFire_AddScriptTask( "AccessRecord";
'lACCeSS Record Scriptll; Illl; Illl; Illl; Illl; Illl; Illl; Illl); 0 )

This ensures that ScriptFire invokes the script Access Record Script everytime are-
cord of the target table is viewed. As the calculation always returns the value 1, record
viewing is granted in any case. Of course, you may customize the formula to return O if re-
cord viewing should be denied.

Invoke a script when editing a record (FileMaker 7 and 8 only):

To invoke a script when a record is edited (user enters any field of the record) adapt the
Access Privileges as mentioned above. Therefore, navigate to the Custom Record Privi-
leges dialog as shown above. However, this time choose the entry limited from the Edit pull-
down field and specify a ScriptFire function call according to this example:

1&
Left( SFire_AddScriptTask( "EditRecord";
llEdit Record Scriptll; Illl; Illl; Illl; Illl; Illl; Illl; Illl); 0 )

Just as shown earlier for record viewing, this ensures that ScriptFire invokes the
Edit Record Script everytime a record of the target table is edited.

Invoke a script when deleting a record (FileMaker 7 and 8 only):

The same approach can be used to invoke a script when a record is deleted. Therefore,
choose the entry limited from the Delete pull-down field in Custom Record Privileges dialog
and specify a ScriptFire function call as demonstrated by the previous examples.

Dacons ScriptFire Manual 34



CHAPTER S5
Power Management Tasks

In addition to schedule-based and event-based tasks, ScriptFire supports the scheduling of
computer power management. Using sleep and shutdown tasks you can put the computer
to sleep according to a specific schedule (e.g. every day at night) or even shut it down
automatically.

Sleep tasks

To install a sleep task for FileMaker using ScriptFire the plug-in function
SFire_AddSleepTask is used. The task installed by this function ensures that the current
computer is set to sleep mode according to a specified schedule. To invoke the function
SFire_AddSleepTask trigger it from a script that is attached to a button or defined as startup
script for your solution. Within such a script use the Set Field script step to invoke
SFire_AddSleepTask as described below.

Syntax:
SFire_AddSleepTask( taskName; {schedule}; {timeout}; {taskState} )

Parameters:

taskName — This parameter is required. It specifies a unique name of the task to be added.
The task name can be used later to manage the task (e.g. change or disable it). To update
the settings of an existing task, simply use its name when invoking this function. This pa-
rameter is case-sensitive (“Task1” and “TASK1” refer to two different tasks).

{schedule} — This parameter is optional. Use it to specify the schedule for a sleep task.
The schedule can be based on any of the schedule types described in Chapter 1. By de-
fault the schedule ""once :+0:00:00" is used which means that the computer will be set to
sleep mode immediately if no value for this parameter is specified.

{timeout} — This parameter is optional. It specifies a timeout for the sleep task to be per-
formed in the format HH:MM:SS. By default no timeout is specified for this operation. The
timeout is considered when FileMaker is busy or the task is blocked at the moment it is to
be executed.

Dacons ScriptFire Manual 35



{taskState} — This parameter is optional. Use it to specify the initial state of the task. By
default the task state is set to ""enabled' which means that the task will be active. To
disable a task set this parameter to the value "'disabled".

Sleep task example
The following example sets the computer to sleep every day at 6 pm.

The Set Field script steps that installs the ScriptFire task for this example contains the fol-
lowing plug-in function call (placed in the Calculation Editor):

Syntax:
SFire_AddSleepTask( "Sleep Task'; '"daily: 18:00:00"; "'; "enabled™)

In detail this means that the task installed can be referenced later under the name
"Sleep Task™ (e.g. to remove it at a later point). The value of the parameter schedule
which is "daily: 18:00:00" sets the sleep time to 6 pm (daily). A timeout is not set in
this example. Finally, the task state is set to ""enabled™ since this script task should be
active from the moment it is installed. Since ""enabled" is the default value of the

taskState parameter this value could also be skipped by using an empty value "**".

Shutdown tasks

Using the shutdown tasks is similar to sleep tasks. To install a shutdown task for FileMaker
using ScriptFire the plug-in function SFire_AddShutdownTask is used. The task installed
by this function ensures that the current computer is shut down according to a specified
schedule. To invoke the function SFire_AddShutdownTask trigger it from a script that is at-
tached to a button or defined as startup script for your solution. Within such a script use the
Set Field script step to invoke SFire_AddShutdownTask as described below.

Syntax:
SFire_AddShutdownTask( taskName; {schedule};
{timeout}; {taskState} )

Parameters:

taskName — This parameter is required. It specifies a unique name of the task to be added.
The task name can be used later to manage the task (e.g. change or disable it). To update
the settings of an existing task, simply use its name when invoking this function. This pa-
rameter is case-sensitive (“Task1” and “TASK1” refer to two different tasks).

{schedule} — This parameter is optional. Use it to specify the schedule for a shutdown
task. The schedule can be based on any of the schedule types described in Chapter 1. By
default the schedule ""once:+0:00:00" is used which means that the computer will be
shut down immediately if no value for this parameter is specified.

{timeout} — This parameter is optional. It specifies a timeout for the shutdown task to be
performed in the format HH-MM: SS. By default no timeout is specified for this operation.

Dacons ScriptFire Manual 36



The timeout is considered when FileMaker is busy or the task is blocked at the moment it is
to be executed.

{taskState} — This parameter is optional. Use it to specify the initial state of the task. By
default the task state is set to ""*enabled" which means that the task will be active. To dis-
able a task set this parameter to the value

"disabled".

Shutdown task example

In the following example the computer is shut down every Saturday at midnight.

The Set Field script steps that installs the ScriptFire task for this example contains the fol-
lowing plug-in function call (placed in the Calculation Editor):

Syntax:
SFire_AddSleepTask( "Shutdown Task';
"weekly: Sa 00:00:00"; "'"; "enabled'™)

In detail this means that the task installed can be referenced later under the name
"Shutdown Task' (e.g. to remove it at a later point). The computer will be shut down
every Saturday at midnight since the schedule parameter is set to the value
"weekly: Sa 00:00:00". A timeout is not set in this example. Finally, the task state is
set to ""enabled' since this script task should be active from the moment it is installed.
Since ""enabled" is the default value of the taskState parameter this value could also

be skipped by using an empty value ***".

Dacons ScriptFire Manual 37



CHAPTER 6
Managing Tasks

ScriptFire provides function to manage installed tasks. Using the following managing func-
tions, you can remove installed task, enable or disable them, and retrieve settings of tasks.

Note: To update settings of an existing task just install another task with the same name.
ScriptFire will then overwrite existing settings for the specified task.

Task filters

The functions mentioned below use the parameter taskFi I ter. It lets you apply certain
task managing activities to all installed tasks that match a specified filter. To apply a func-
tion call to a specific task, simply pass its name (case-sensitive) to ScriptFire using this pa-
rameter. In order to apply a command to a group of tasks use one of the following filters:

e -allv
Refers to all installed tasks.

e 'type=task-type"’; task-type can be one of the following values:
"Script"”, "Open', "Close", "Sleep", ""Shutdown", ""Layout" or "Window"".
Refers to all tasks that match the specified type.

e "class=task-type"'; task-type can be one of the following values:
"'Schedule-based™ or ""Event-based"

Refers to all tasks of the specified task class.

e 'state=—task-state"; task-state can be one of the following values:
"Enabled" or "Disabled"

Refers to all enabled or disabled tasks.

All filter keywords mentioned above are case-insensitive.

Remove tasks

To remove any ScriptFire task that has been installed earlier the plug-in function
SFire_RemoveTask is used. This function supports filters that enable you to remove a
specific task or an entire group of tasks that match certain criteria. To invoke the function

Dacons ScriptFire Manual 38



SFire_RemoveTask trigger it from a script that is attached to a button. Within such a script
use the Set Field script step to invoke SFire_ RemoveTask as described below.

Syntax:
SFire_RemoveTask( taskFilter )

Parameters:
taskFi lter — This parameter is required. It supports different criteria that can be used to
indicate the tasks that are to be removed. To remove a specific task, simply provide its

name (case-sensitive). To remove a group of tasks, specify a task filter as shown in the in-
troduction of this chapter.

Toggle task state

To change the state (enabled or disabled) of a specific task or of a group of tasks the plug-
in function SFire_ToggleTask is used. To invoke the function SFire_ToggleTask trigger it
from a script that is attached to a button. Within such a script use the Set Field script step to
invoke SFire_ ToggleTask as described below.

Syntax:
SFire_ToggleTask( taskFilter; taskState )

Parameters:

taskFi lter — This parameter is required. It supports different criteria that can be used to
indicate the tasks that are to be toggled. To toggle the state of a specific task, simply pro-
vide its name (case-sensitive). To toggle a group of tasks, this parameter supports the fil-
ters shown in the introduction of this chapter.

taskState — This parameter is required. Use it to set the state for the tasks to be toggled.
This parameter can have the value ""Enabled" (enabled all selected tasks) or
"Disabled" (disables all selected tasks). This parameter is case-insensitive.

Retrieve the number of tasks

Sometimes you need to retrieve the number of installed tasks that match a certain criterion.
Therefore, invoke the function SFire_GetTaskCount from a script (Set Field script step) or
from any other calculation that requires the number of installed ScriptFire tasks.

Syntax:
SFire_GetTaskCount( {taskFilter} )

Parameters:

{taskFilter} — The taskFilter parameter is optional for this function. By default it re-
turns the number of all installed tasks. To retrieve the number of a certain task group, apply
one of the filters described in the introduction of this chapter.

Dacons ScriptFire Manual 39



Retrieve a list of installed tasks

To retrieve a list of the names of all installed tasks or a list of all installed tasks that match a
certain criterion invoke the plug-in function SFire_GetTaskList from a script (Set Field
script step) or from any calculation. This function returns the names of all installed tasks
that match the specified criterion separated by carriage return.

Syntax:
SFire_GetTaskList( {taskFilter} )

Parameters:

{taskFilter} — The taskFilter parameter is optional for this function. By default it re-
turns the names of all installed tasks. To retrieve the names of a certain task group only,
apply one of the filters described in the introduction of this chapter.

Retrieve task settings

To retrieve specific settings of an installed task, invoke the plug-in function
SFire_GetTaskSettings. It returns specific settings of a single installed task at a time.
Invoke this function from including the Set Field script step.

Syntax:
SFire_GetTaskSettings( taskName; {items} )

Parameters:
taskName — This parameter is required. It specifies the name of the task of which settings
are to be retrieved.

{items} — This parameter is optional. Use it to specify the properties you would like to re-
trieve. This can be one or several of the following items: ""Name"', ""Type"', ""Class",
"'State", ""Schedule”, "File", "Script", "Timeout". In addition, ScriptFire running
under FileMaker 7 or 8 lets you specify the following items: ""Window'* and "'Layout™. Use
semicolons (“;”) to combine several items within this parameter. By default (empty parame-
ter) this function returns the most common settings according to the following request pat-

tern: "Name; Type; Class; State"

Note: The order of items in the request does not have an influence of the order of items in
the result. The result is formatted according to a pre-defined pattern.

Block certain task types

The function SFire_SetTasksBlocking blocks or unblocks the execution of certain task
types. Invoke this function from a script (Set Field script step) or from any calculation.
ScriptFire stores a blocking counter for each task type (Script, Open, Close, Sleep, Shut-
down, Layout and Window). Blocking counters can be controlled using this function. If a
blocking counter for a task type is greater than zero, ScriptFire does not execute tasks of
this type.

Dacons ScriptFire Manual 40



If a section of a script requires a certain task type to be blocked (e.g. Window type) you can
block this type for the execution of this script section and unblock it afterwards without
changing the state property (enabled or disabled) of the assigned tasks.

Syntax:
SFire_SetTasksBlocking( control; {types} )

Parameters:

control — This parameter is required. It specifies the blocking control that is to be exe-
cuted. The value ""Block™ increments the blocking counter by 1. The value ""Unblock™
decrements the blocking counter by 1. The value ""Force block" sets the blocking
counter to 1 and the value ""Force unblock™ sets the counter to 0. This parameter is
case-insensitive.

{types} - This parameter is optional. Use it to apply the blocking control to certain tasks
types. By default, the control is applied to all task types. The following values are sup-
ported: "'Script", "Open", ""Close", ""Sleep", ""Shutdown", ""Layout" and
"Window"'. To apply the blocking control to several types at a time separate the types by

semicolon (e.g. "Layout; Window"). This parameter is case-insensitive.

Dacons ScriptFire Manual 41



CHAPTER 7
Logging Plug-In Activities

ScriptFire provides sophisticated features to log plug-in activities. The plug-in writes the log
to a file named ScriptFire.log. It is stored in the same folder as the plug-in. Use logging to
track plug-in activities. This can be especially useful when debugging your ScriptFire solu-
tions. Of course, logging is optional and can be switched off completely.

Set logging preferences

To set logging preferences the plug-in function SFire_SetupLog is used. It is recom-
mended to invoke this function in a start-up script of your solution (using the Set Field script
step).

Syntax:
SFire_SetupLog( control; {mode}; {maxSize} )

Parameters:

control — This parameter is required. It switches logging on or off using one of the follow-
ing commands: ""OFf"* disables the log engine completely, "*Overwrite' switches logging
on and replaces the log file for every FileMaker session. The value ""Append"* switches log-
ging on as well, and appends the log file for every session. This parameter is case-
insensitive.

{mode} — This parameter is optional. It specifies the log level. To log plug-in errors only set
this parameter to ""Errors". To log all activities of ScriptFire, set the value
"Activities". By default (empty parameter), only errors are logged. This parameter is
case-insensitive.

{maxSize} — This parameter is optional. It specifies the maximum size of the log file in KB.
By default (empty parameter), the value 256 is used. During a session, the maximum size
of the log file may be greater than specified maximum (up to 1.5 times) to avoid speed deg-
radation. On shutdown ScriptFire adjusts the log file size according to specified maximum.

Dacons ScriptFire Manual 42



Read from the log file

Using the function SFire_ReadLog ScriptFire lets you read information from the log file into
FileMaker. This can be useful to integrate log functionality or administration control into a
FileMaker solution.

Syntax:
SFire_ReadlLog( control; {lineCount} )

Parameters:

control — This parameter is required. It switches logging on or off using one of the follow-
ing commands: ""OFf"" disables the log engine completely, ""Overwrite' switches logging
on and replaces the log file for every FileMaker session. The value ""Append" switches log-

ging on as well, and appends the log file for every session. This parameter is case-
insensitive.

{lineCount} — This parameter is optional. It specifies the number of log file lines that are
returned. By default, only the current line is returned. Set this parameter to *"-Al'l"" to re-
trieve all lines starting at the current reading position. This parameter is ignored if the
control parameter is set to ""Goto end". The total log content returned is limited to 1 MB
under FileMaker 7 and 8 and to 64 KB under FileMaker 6 and earlier.

To retrieve all log entries that were written during the execution of a specific script, invoke
SFire_ReadlLog and set the control parameter to "'Goto end" in the beginning of the
script. At the end of the script invoke this function again and with the control parameter
setto ""From marker' and the 1 ineCount parameter set to ""-All"".

Write custom log entries

The function SFire_WriteLog enables you to extend the logging functionality beyond the
command mentioned earlier. Use this function to log custom entries (e.g. to debug your
FileMaker solution).

Syntax:
SFire_WriteLog( msgld; msgDescription; {msgExtension} )

Parameters:
msgld — This parameter is required. Use it to specify an ID of the custom log entry. This
help to identify log entries at a later point.

msgDescription — This parameter is required. Provide a short description of the log entry
using this parameter.

{msgExtension} — This parameter is optional. Use it to log additional information.

Dacons ScriptFire Manual 43



CHAPTER 8
Additional Plug-In Functions

ScriptFire provide additional functions that are described in this chapter. They enable you to
retrieve script parameters, result codes and the version of the plug-in. Moreover, you can
flash the application icon to notify users about events.

Retrieve script parameter

Use the function SFire_GetScriptParameter under FileMaker 6 and earlier to retrieve the
script parameter that has been passed to the script that has been passed to the current
script. This function is not available under FileMaker 7 and 8. When working with these
FileMaker versions simply use the native function Get (ScriptParameter) to retrieve the
script parameter of the current script.

Retrieve last result code

The function SFire_GetLastResultCode returns the result code of the last ScriptFire func-
tion that has been invoked. ScriptFire functions that are not expected to return content pro-
vide a result code out-of-the-box. However, functions that are expected to return content do
not provide results codes. To find out about the operation status of these functions
SFire_GetlLastResultCode has to be invoked. Please refer to p. 13 for a list of all ScriptFire
result codes and their meanings.

ScriptFire functions that return result codes (SFire_GetLastResultCode not needed but can
still be used):

e SFire_AddScriptTask

e SFire_AddOpenTask

e SFire_AddCloseTask

e SFire_AddSleepTask

e SFire_ AddShutdownTask
e SFire_AddWindowTask

e SFire_AddLayoutTask

e SFire_ RemoveTask

e SFire_ToggleTask

Dacons ScriptFire Manual 44



e SFire_SetTasksBlocking
e SFire_Setuplog

e SFire_WriteLog

e SFire_Flashlcon

e SFire_RegisterSession

ScriptFire functions that do not return result codes (SFire_GetlLastResultCode has to be
used to find out about the operation status):

e SFire_GetTaskCount

e SFire_GetTaskList

e SFire_GetTaskSettings

e SFire_ReadlLog

e SFire_GetScriptParameter
e SFire_Version

Flash the application icon

When FileMaker executes scripts it is usually busy. During time intensive operations users
may switch to other applications. Invoke the ScriptFire function SFire_Flashlcon at the end
of time intensive operations to flash the FileMaker icon (in the task bar on Windows or in the
Dock on Mac OS X).

Syntax:
SFire_Flashlcon ( {timeout}; {control} )

Parameters:

{timeout} - This parameter is optional. It specifies a timeout in HH:MM:SS format that
defines the maximum duration of the icon flashing. Set this parameter to "*00:00:05" to
have the application icon flashed for a maximum of five seconds. The value ""00:00:00"
stops flashing immediately. Flashing is also stopped when FileMaker was in background
and is clicked to foreground. By default, this function sets an infinite flashing timeout.

{control} — This parameter is optional. It specifies whether the application icon should
only be flashed when FileMaker is in background (value "*Background"’) or if the icon
should be flashed in any case (value "*Always'"). By default (empty parameter) the option
"Always" is used.

Retrieve plug-in version

The function SFire_Version returns the version of the installed ScriptFire plug-in. Use this
function to check if the plug-in is installed when your database solution starts (start-up
script). The version information provided by this function can also be used for the AutoUp-
date plug-in which pushes updated versions of other plug-ins to all FileMaker network cli-

Dacons ScriptFire Manual 45



ents automatically. Review the FileMaker documentation for more information about the
AutoUpdate plug-in.

Syntax:
SFire_Version ( {option} )

Parameters:

{option} — This parameter is optional. It can be used to customize the content returned
by the plug-in function. Leave this parameter empty to retrieve all of the following items. To
retrieve only a specific version information item, set this parameter to one of the following
values: ""Version' (Returns the exact version of the plug-in installed. In most cases you
will pass this value to the plug-in to retrieve the version number), ""Product" (returns the
name of the product which is “ScriptFire”), ""Platform" (returns the operating system the
plug-in is running on) or ""Copyright" (returns copyright information of the plug-in).

Register the plug-in

To remove all trial limitations from the plug-in it has to be registered using the registration
data you receive from Dacons after purchasing a ScriptFire license. ScriptFire can be regis-
tered manually using the preferences dialog (FileMaker Application Preferences » Plug-Ins
» ScriptFire).

To avoid manual plug-in registration when shipping your database solution to a client or dis-
tribute a FileMaker Runtime application with ScriptFire you can also register the plug-in
from the start-up script of your solution by invoking the function SFire_RegisterSession
with your registration data before any other plug-in function is invoked. Note that regis-
tration data from script will not be stored so registration from script has to be invoked every
time a solution starts.

Syntax:
SFire_RegisterSession ( userName; userCode )

Parameters:
userName — This parameter is required. It is used to set the user name you receive from
Dacons after purchasing a ScriptFire license.

userCode — This parameter is required. Use it to pass the registration code to the plug-in
which you receive from Dacons after purchasing a ScriptFire license.

Dacons ScriptFire Manual 46



