

WEIGHSCORE,

The

Neural Network Server
to automate centralized decision making

in any field of business
suitable for online training

for an immediate adjustment to volatile real world situations

and

The

Neural Network
Command Line Tool

to convert an implicit experience
hidden in available statistical data

by weighing the influence of different factors
and factor combinations

and storing numeric influence representations
in an X.M.L. based neural scorecard.

The User Manual.

© Vsetech 2006

1

Copyright © 2005-2006 OOO Vsetech. All rights reserved.

The content of this document may be changed without prior notice.

We welcome and consider all comments and suggestions about this document. Please send us
them via e-mail: support@weighscore.com, or visit our web forum at
http://www.weighscore.com/forum.

Weighscore is a trademark of OOO Vsetech.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Other brand and product names are trademarks or registered trademarks of their respective
owners.

mailto:support@weighscore.com
http://www.weighscore.com/forum

Contents

Contents.. 1
Introduction ... 3

Terms ...3
Typefaces ...3

Product Features ... 5
Prerequisites .. 6
nnt: Command Line Tool.. 7

Installation, running and how to uninstall ..7
nnt.config: Configuration reference ...7
Operation instructions ..9

Asking command line ...9
Teaching and testing command line..9
Bulk JDBC data source teaching and testing ..9
Bulk JDBC data source update with answers ...10
Asking, teaching and testing the server-side neural network..10

Command line options reference..10
neural.config: Basic configuration of the Enterprise version 12
nns: The Neural Server ... 13

Installation, launching, stopping and uninstall ...13
Command line options reference..13
Call from client ..14

Test call using telnet..14
Calling server from client programs ...14

Protocol reference ..18
Neural network developer reference ... 20

Neural network structure definition ...20
General information ..20
Neural Network...20
Neuron ..21
Synapse ...22

Neural network special objects ..23
Activation ...23
Teacher ...23
Statistic ...24

Translator definition...26
General information ..26
Field ..27
Pass ...27
Translate ...27
Item...27
Activator ...28
Range ..28

Neural network designing and training hints..28
Network size ...28
Training algorithm ..29

2

3

Introduction

This is a common reference manual for the command line and the server versions of Weighscore.
If you don’t use the Neural Server, skip section nns: The Neural Server.

For some, it might be useful to start reading the reference manual from the last section, which is
entitled the Neural network developer reference, where you can find information about how to
develop and train neural networks with our tools.

Terms
This manual uses some terms that may differ from those adopted in academic circles. Here are
some of them:

Question—a set of input values.

Answer—a set of output values. Often referred to as response.

Ask—the neural network querying process. You give the network a question, and it produces the
answer.

Teach—in this reference manual—a training action. You teach the network by providing it with
a question coupled with the correct answer. The network is taught to give that answer, to that
question. The teaching action affects the synapses’ weights and neurons’ biases.

Test—in this reference manual—a probing action. The probing action provides the network with
a question and an answer as while teaching; he result is the error—the difference between the
answer provided and the answer that the network could give at that time. Testing does not affect
the network’s weights and biases.

Case—a teaching example, which consists of a question and an answer.

Threshold—bias of the neuron, the value added to weighed inputs before using the activation
function.

Typefaces
Important notices
Important notices appear in the document like this:

This i s an Impor tant Not i ce
Please pay close attention to the document sections marked as important notices.

4

Enterprise feature notices
If the described feature only belongs to the enterprise version of Weighscore, the description will
start like this:

This is a feature of the Enterprise Version

File, program, class and other names, protocol commands
File and other names appear in the text in the following style:

filename.jar

Console screenshots
Console screenshots look like this:
>java -jar weighscore-clt.jar -h
The Weighscore Neural Network training, probing and requesting command line
tool capable to connect to the JDBC databases.
Weighscore Neural Network Toolkit. (c) Vsetech 2005-2006

Usage: nnt [-n <name>] [-a] [-u] [-p] [-r N] [-t <double>] [-c <filename>]
 [-S <name>] [-D<configname=value>] [-v] [-h]
 [q1 [q2 [q3] ...] [a1 [a2] ...]]
.......

Text file and code listings
Text file listings and code in programming examples look like the following:
 public double execute(double x) {
 return beta*x;
 }

5

Product Features

Weighscore Neural Network Toolkit has the following features and benefits:

• Free workstation command line tool for the initial neural network training for the server
and for educational or scientific purposes;

• platform independent, written in java—it may be run on Solaris, Windows, Linux etc;

• uses JDBC data source as a training case set—it may get training data from any source if
there is a JDBC driver for it;

• converts (translates) the simple string reference entries to neurons' numeric values—it
requires minimum preliminary data transformation;

• stores the neural network in a simple XML file—editable with any text editor.

The main advantage to Weighscore Neural Server is that is has the ability to be trained online,
simultaneously with its querying. When new data that characterizes the response that was given
earlier arrives, the network may be slightly updated using the new data without stopping.

Moreover, there are the following advantages:

• thread safe simultaneous processing—suitable for distributed calling;

• easily called with a simple protocol—see examples for java and winsock in the reference
manual;

• callable as an Axis webservice— easy to call from almost any client platform.

6

Prerequisites

The Weighscore neural server and command line tool are written in Java, so they may be run on
any computer system that already has installed:

- JRE 1.4 or higher

- 128 mb RAM minimum; larger neural networks require more memory to be queried and
trained.

The Server and clients need a TCP/IP network interface to communicate with each other.

7

nnt: Command Line Tool

Installation, running and
uninstallation
To install the program, extract the file weighscore-clt.jar from the downloaded archive to
any directory convenient for you.

Set the path to the Java runtime executable in the PATH environment variable.

You may run the tool directly from the jar file, like this:
>java –jar weighscore-clt.jar

Or, you may explicitly call the nnt executable class, using the following standard syntax:
>java -classpath weighscore-pntk.jar com.weighscore.neuro.nnt

To uninstall, just delete the weighscore-clt.jar.

nnt.config: Configuration reference
The nnt tool has a configuration file that defines the variables needed to perform network
training and requesting (teaching and asking).

Config file has the standard Java properties format, so you may set variables like “name=value”,
and use “#” sign for disabling settings or for comments.

All “db” related variables may be omitted if you pass data from the command line.

The config file defines the following variables:

network
This is an optional variable.

The name of the neural network to teach, test or ask.

In the free version, nnt tool will work only with the network named NeuralNetwork.xml,
and this variable will be ignored.

dbdriver
Name of the JDBC driver class. To access some ODBC data sources, try the JDBC-ODBC
driver, like this:
dbdriver=sun.jdbc.odbc.JdbcOdbcDriver

8

To access the database server, it’s advised to use the driver that is designed specifically for that
particular database.

dburl
JDBC URL to the database.

For example, to access the MS Access database via JDBC-ODBC driver, use
dburl=jdbc:odbc:Driver=Microsoft Access Driver (*.mdb);DBQ=C:/testing.mdb

See your database’s JDBC driver manual for the syntax of other database’s URLs.

dbuser, dbpassword
These are optional variables.

If the DB server requires it, you may pass the username and password through these variables

dbtable
The name of the table in the database, which is the source for the neural network teaching, and
possibly the destination for the results of asking.

This setting is used to construct a SQL “update” statement; if the dbquery is omitted, this is
also the table used in the “select” statement.

dbquery
This is an optional variable.

The SQL query to use as the data source for teaching. You may use this variable to limit the
training set, or to specify the appropriate order of teaching cases to be presented to the network,
or anything else.

If you name the fields in the query explicitly (not with an asterisk sign), be sure to include all the
fields defined in the neural network’s translator. Include the ID fields, if you wish to update the
table and set the dbidfields variable.

If you omit this setting, the query will be constructed from the dbtable variable as “select *
from {dbtable}”

The system doesn’t check if the table names in the dbquery and dbtable are the same.

dbidfields
This is an optional variable.

If you wish to record the network’s answers to the database table, specify the names of the fields,
whose values uniquely identify every record, separated by commas, like this:
dbidfields=x1,x2

If you omit this setting, the system will construct the SQL update statement using all the input
field names and values of the neural network. This will overwrite more than one record in the
data source, if those records have the same values in the network input fields.

9

Operation instructions
You may keep the configuration file in the file with a name other than nnt.config. Use the –c
switch followed by the configuration file name.

To increase the amount of output information, use the –v switch.

In the Enterprise verstion of nnt, you may override the default network specified in
nnt.config, using the –n switch followed by the network name.

Asking command line
To ask the network from the command line, use the –a switch.

Add the input values after the last option switch or value, separated by spaces.

The nnt program will output the result in the console.
>java –jar weighscore-clt.jar -a 0 1
0.7993303880674504

Teaching and testing command line
To teach the network, pass the question together with the correct answer with space separated
command line arguments to the nnt tool, without any switches. The error (the difference between
the correct answer and the answer that the network could give at that time) will be printed in the
console. The network’s weights and biases will be updated to possibly minimize the error.
>java –jar weighscore-clt.jar 0 1 1
E: 0: -0.20066961193254962

To test the network, use the –p switch. Testing the network is computing the error without
adjusting the weights and biases values.

Bulk JDBC data source teaching and testing
If you don’t pass command line arguments, the nnt tool will take data to teach or to test from the
JDBC data source specified in the configuration file.

The teaching (or testing) procedure will be repeated for every record in the data source, using the
record as the network’s input and output values.

To make nnt not teach but to just test the network, use the –p switch (“p” means “probe”).

If it is teaching, the whole record set will be run multiple times. You may limit the number of
times the record set will run by setting the –r switch followed by the maximum quantity of runs.

While it is teaching, if everything proceeds as planned, the error must decrease. You may stop
nnt when the maximum error value of the network’s response becomes less then the value you
specify using the –t switch (“t” stands for “target”):
>java -jar weighscore-clt.jar -t 0.01
Run: 1034 Case: 4 Net: null E: 0: -0.0063773810570814105 AE: 0.01110861333723248708
Target 0.01 met.

1034 cases run.

“E” are the current errors of all the output neurons; “AE” are the average errors for the last N
cases, where N is the size of the teaching case set.

10

Bulk JDBC data source update with answers
The nnt tool is capable of updating the data source with the network answers. Use the –u switch
to do this. I m p o r t a n t : B e s u r e t o s a ve t h e copy o f t ra in i ng examples s e t .
T h e u p d a t e a c t i on wi l l o ve r wr i t e the o l d i n f o r m a t i on i n t h e s p e c i f i e d
da ta source ; you won’ t be ab l e t o use i t f or t ra in ing purposes
a n y m o r e .

Asking, teaching and testing the server-side neural
network
This is a feature of the Enterprise version of nnt.
To ask, to test or to teach the neural network that resides on the server, you can specify the name
of the network as follows:
neuro://hostname[:port]/networkname

The hostname is the host where the Weighscore Neural Server is running; the port is the port
where it is listening. The networkname is the name of the neural network on that server.

You can specify the name of the network in this way as in nnt.config, or in the command line
-n switch argument.

Command line options reference
-n <name> (network)
The name of the neural network to use instead of that which is specified in the configuration file.

-a (ask)
Don't train the network. Run the case set once only.

-u (update)
If the JDBC source is used, don't train the network, update the datasource with the network's
responses; run the case set once only. See the Bulk JDBC data source update with answers
section.

-p (probe)
Compute errors (probe the network) without training; run the case set once only.

-r <N> (runs)
The maximum quantity of runs of the training set taken from the JDBC datasource; it is ignored
when processing command line arguments, or when probing the network, or when it is updating
a JDBC set. See the Bulk JDBC data source teaching and testing section.

-t <double> (target)
The minimum target error. See the Bulk JDBC data source teaching and testing section.

11

-c <filename> (config)
The nnt configuration file instead of the default nnt.config.

-D<configname=value> (detail)
Overrides the configuration value in the config file (can set values without spaces only).

-v (verbose)
Outputs the data set with answers and errors, each case in a separate line.

-h (help)
Outputs information about switches.

12

neural.config: Basic
configuration of the Enterprise version

This section relates only to the Enterprise version of the Command Line Tool and to the
Neural Server.
The free version works only with one neural network and its translator, definitions of which are
stored in the files NeuralNetwork.xml and Translator.xml.

In the Enterprise version, there is an option to determine where all the neural networks are
stored.

The basic configuration of the underlying neural library is kept in the file named
neural.config. In the current version it holds just two variables which define the origin of the
neural networks and translators definitions.

neuralNetwork.origin
This is an optional variable, which may take only one value in the current version,
com.weighscore.neuro.XmlFileOrigin; this is the default. This is the name of the class
that helps to serialize neural networks to xml streams.

neuralNetwork.origin.xml.path
The path to the directory where the neural networks and translators xml definition files are
stored.

The path must end with the slash character. Use forward slashes (‘/’) even on the Windows
platform.

Example:
neuralNetwork.origin=com.weighscore.neuro.XmlFileOrigin
neuralNetwork.origin.xml.path=F:/users/steve/work/neuro/neuralnetworks/

13

nns: The Neural Server

This section describes the Neural Server, which is not free.

Installation, launching, stopping and
uninstall
To install the server, extract the file weighscore-server.jar from the downloaded archive
to any directory convenient for you.

To uninstall, just delete the weighscore-server.jar.

Set the path to the Java runtime executable in the PATH environment variable.

You may launch the server directly from the command line like this:
>java –jar weighscore-server.jar

In the Windows platform, in order to avoid the command prompt window interfering with
normal viewing on the screen, you may use javaw instead of java, like this:
>javaw –jar weighscore-server.jar

In Unix-like systems, use “&” sign to release the shell:
>java –jar weighscore-server.jar &

I m p o r t a nt : D o n ’ t l a u n c h t wo i n s t a n c e s o f t h e s e r v e r t h a t h a v e t h e
s a m e n e u r a l n e t wo r k o r i g i n p a t h . T h i s m a y c a u s e t h e n e u r a l n e t wo r k
to have f i l e corrupt ion or da ta l o s s .
To stop the server, launch the same executable java file but with the –S switch:
>java –jar weighscore-server.jar -S

If you launched the server on a different port than the default, specify the port number when
stopping as well.

I m p o r t a nt : A v o i d k i l l i n g t h e “ j a va ” o r “ j a v a w” p r o c e s s us i n g t h e
Windows ta sk manager or the Un ix k i l l command . Th i s may cause the
n e u r a l n e t wo r k f i l e c o r r u p t i o n (i f i t i s k i l l e d whi l e a u t o s a v i n g t h e
n e t wo r k) o r d a t a l o s s (t h e n e t wo rk d a t a b e i n g t a u g h t wo u l d n ’ t b e
s a v e d t o a f i l e) .

Command line options reference
-p PORT
Specify the PORT to listen to; the default is 1133.

14

-g
This allows retrieving the neural network XML definitions. If the neural network is used to make
financial decisions and/or is nonpublic, don’t run the server with this option.

-l LOGFILE
Set the file to get output messages instead of the console.

-S
Shutdown the server. If the server was launched with the –p switch, add the –p switch and
specify that port as well.

-h
Output the command line options information.

Call from client
The Neural Server is intended to be used together with other software that will query the neural
networks and help to make the right business decisions. Additionally, there is a possibility to
query the server over the network programmatically, asking questions and getting answers.

Test call using telnet
The simplest way to test the connection between the client and server machines is to connect to
the server from the client machine using a telnet program. The server has simple text protocol
so the user can query the server through telnet with just a keyboard.

Run telnet giving it the server name and port as parameters:
>telnet serverhost 1133

Then print the server command and its parameters, separated by tabs, as described in Protocol
reference section below. For example,
ask Xor.xml 1 1

and it will return an answer:
OK 0.87775815287206

Calling server from client programs

java
In Java programs, you may call the server as easily as follows:
import java.net.*;
import java.io.*;

.....

 private static String[] commandExample(String host,
 int port,
 String networkName,
 String command,
 String arguments){

15

 Socket s = null;
 String[] ret;
 try {
 s = new Socket(host, port);
 s.setSoTimeout(10000);

 PrintWriter out = new PrintWriter(s.getOutputStream(), true);
 BufferedReader in =
 new BufferedReader(new InputStreamReader(s.getInputStream()));

 out.println(command + '\t' + networkName + '\t' + arguments);
 out.flush();

 try {
 String reply = in.readLine();
 String[] replyArr = reply.split("\t" ,2);
 if(replyArr[0].equals("OK")){
 try {
 ret = replyArr[1].split("\t");
 } catch (ArrayIndexOutOfBoundsException e) {
 ret = new String[0];
 }
 }
 else{
 throw new RuntimeException("Server error: " + replyArr[1]);
 }
 } catch (SocketTimeoutException ex2) {
 throw new RuntimeException("Server does not respond on port " +
 port, ex2);
 }
 out.close();
 in.close();
 s.close();
 } catch (IOException ex2) {
 throw new RuntimeException(ex2);
 }
 return ret;
 }

This example method receives the commands described in the Protocol reference section of this
document, accompanied by the neural network name and the arguments as one string containing
tab separated values. The Server host and port need to be specified as well.

The String’s split method is a feature of JDK 1.4 or higher. You may use StringTokenizer
to extract the “OK”/”ER” flag and other tab separated parts of response.

Windows Sockets (including a Visual Basic Winsock example)
Using Microsoft’s Winsock, or some third party library, you may connect to the Neural Server
from your Windows programs with C++, Visual Basic, Delphi etc.

You may connect to the Server from MS Office programs like Excel or Access, if you add a
Visual Basic for Applications module that will communicate with the Neural Server.

To connect to the Server through the socket, you may use Winsock library (ws2_32.dll, or
formerly wsock32.dll). There are some third party libraries that provide a less difficult way to
call the server. Below is a brief example of how to interact with the server using Winsock. See
the Winsock reference manual (http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winsock/winsock/winsock_reference.asp) for details.

To gain access to the dll’s functions, you should declare them like this:
Public Declare Function WSAStartup Lib "ws2_32.dll" (ByVal _
 wVR As Long, lpWSAD As WSA_Data) As Long

16

Public Const WINSOCK_VERSION = 1

Public Const WSADESCRIPTION_LEN = 257
Public Const WSASYS_STATUS_LEN = 129

Public Type WSA_Data
 wVersion As Integer
 wHighVersion As Integer
 szDescription As String * WSADESCRIPTION_LEN
 szSystemStatus As String * WSASYS_STATUS_LEN
 iMaxSockets As Integer
 iMaxUdpDg As Integer
 lpVendorInfo As Long
End Type

Public Declare Function socket Lib "ws2_32.dll" (ByVal _
 af As Long, ByVal s_type As Long, ByVal protocol _
 As Long) As Long

Public Enum ADDRESS_FAMILIES
 AF_INET = 2
 AF_NS = 6
 AF_IPX = AF_NS
 PF_INET = 2
End Enum

Public Enum SOCKET_TYPES
 SOCK_STREAM = 1
 SOCK_DGRAM = 2
End Enum

Public Enum PROTOCOLS
 IPPROTO_TCP = 6
 IPPROTO_IP = 0
End Enum

Type sockaddr
 sin_family As Integer
 sin_port As Integer
 sin_addr As Long
 sin_zero As String * 8
End Type

Public Declare Function connect Lib "ws2_32.dll" _
 (ByVal s As Long, addr As sockaddr, addrlen As Long) As Long

Public Const QUEUE_SIZE = 5

Public Declare Function recv Lib "ws2_32.dll" _
 (ByVal s As Long, buf As Any, ByVal buflen As Long, ByVal flags _
 As Long) As Long

Public Declare Function send Lib "ws2_32.dll" _
 (ByVal s As Long, buf As Any, ByVal buflen As Long, ByVal _
 flags As Long) As Long

Public Declare Function htons _
 Lib "ws2_32.dll" (ByVal hostshort As Integer) As Integer

Public Declare Function inet_addr _
 Lib "ws2_32.dll" (ByVal cp As String) As Long

Public Declare Function closesocket _
 Lib "ws2_32.dll" (ByVal s As Long) As Long

Sub test()

17

 commandExample "127.0.0.1", 1133, "Xor.xml", "ask", "1" & vbTab & "1"
End Sub

This is an example of how the server call function may be written.
Sub commandExample(host As String, _
 port As Integer, _
 networkName As String, _
 command As String, _
 arguments As String)

 Const MAX_BUFFER_LENGTH As Long = 8192

 Dim wsaData As WSA_Data
 Dim s As Long

 Dim arrBuffer(1 To MAX_BUFFER_LENGTH) As Byte
 Dim arrSendBuffer() As Byte
 Dim lngBytesReceived As Long
 Dim strTempBuffer As String
 Dim strBuffer As String

 If (WSAStartup(WINSOCK_VERSION, wsaData)) Then
 MsgBox "Can't init"
 Exit Sub
 Else
 s = socket(PF_INET, SOCK_STREAM, 0)

 If (s = 0) Then
 MsgBox "Error create socket"
 Exit Sub
 End If

 Dim socketaddr As sockaddr

 socketaddr.sin_family = AF_INET
 socketaddr.sin_addr = inet_addr(host)
 socketaddr.sin_port = htons(port)

 If (connect(s, socketaddr, Len(socketaddr)) <> 0) Then
 MsgBox "Bad connect"
 Exit Sub
 End If

 strBuffer = command & vbTab & networkName & vbTab & arguments & vbLf
 arrSendBuffer = StrConv(strBuffer, vbFromUnicode)

 Call send(s, arrSendBuffer(0), Len(strBuffer), 0)
 strBuffer = ""
 Do
 lngBytesReceived = recv(s, arrBuffer(1), MAX_BUFFER_LENGTH, 0)
 strTempBuffer = StrConv(arrBuffer, vbUnicode)
 strBuffer = strBuffer & Left$(strTempBuffer, lngBytesReceived)
 Loop While lngBytesReceived > 0

 MsgBox strBuffer

 closesocket (s)
 End If
End Sub

18

Protocol reference
The commands described below are sent to the server together with arguments, separated by
tabs, with the newline character at the end. The answer is returned as a line with a set of values
separated by tabs as well; the first value in most cases is either “OK” if success or “ER” if an
error occurred. The “OK” string is not returned only when xml stream is a result (when
requesting translator or neural network definitions).

In most cases the first argument is the neural network or translator name. The neural network
name can be skipped if the session is in “persistent mode”. The persistent mode session has the
default neural network.

persistent networkname
Switch the session to the persistent mode with the specified neural network as the default neural
network of the session. The server will not close the connection after this and next commands
until the “quit” command comes.

quit
Stop the persistent session, close the connection.

ask [networkname] question
Ask the question to the network. The questions are tab separated values. The results are tab
separated answers.

teach [networkname] question answer
Teach the network. The question and answer are tab separated values. The results are tab
separated errors.

test [networkname] question answer
Test the network. The question and answer are tab separated values. The results are tab separated
errors.

getAnswerFieldName [networkname | translatorname] index
Gets the field name of the network translator’s output field number index. If the network doesn’t
have a translator, this returns an empty string.

getAnswerSize [networkname | translatorname]
Returns the quantity of the output fields in the network translator. If the network doesn’t have a
translator, this returns the number of output neurons.

getAskFieldName [networkname | translatorname] index
Gets the field name of the network translator’s input field number index. If the network doesn’t
have a translator, this returns an empty string.

19

getAskSize [networkname | translatorname]
Returns the quantity of the input fields in the network translator. If the network doesn’t have a
translator, this returns the number of input neurons.

getFieldNames [networkname | translatorname]
Returns tab separated field names of the network’s translator. If the network doesn’t have a
translator, this returns tab separated empty strings.

outputDefinition [networkname | translatorname]
Gets the xml definition stream of the specified neural network or translator, whichever name is
specified. If it is in persistent mode, the neural network name may be omitted.

outputTranslatorDefinition [networkname | translatorname]
Gets the xml definition stream of the translator from the specified neural network. If the
translator name is provided, it returns the translator xml definition. If it is in persistent mode, the
neural networks name may be omitted.

20

Neural network developer reference

The Neural Network structure is defined by a XML file that has the special structure described
below.

The name of the neural network is the same name of the file defining it, including the ".xml"
ending.

There is one more entity in the neural system—the translator (see Translator definition below).
This object holds the information about the neural network’s data source—like field names—and
the correspondence of the data source fields with the neural network’s input neurons. While the
neural network alone can get only a set of floating point numeric values as its input, and then
returns a set of the same type values as the output, using the translator lets it use non-numeric
values as input and output. These values can be the dictionary entries or IDs; the translator will
convert it to numeric values sent to one or more neurons.

Neural network structure definition

General information

File format
The neural network definition is a text XML file which has a predefined structure described in
NeuralNetwork.dtd file.

Below is the explanation of all neural network tags and their attributes.

Header
The file should start from this set of tags:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE neuralNetwork SYSTEM "NeuralNetwork.dtd">

Neural Network
The main document tag for the neural network file is the <neuralNetwork>.

For compatibility reasons, it should always have the attribute xmlns:xlink set to the value
"http://www.w3.org/1999/xlink", as shown below:
<neuralNetwork xmlns:xlink="http://www.w3.org/1999/xlink" translator="Translator.xml">
...

21

Translator specifying
The translator is specified in the translator attribute. If the translator is not specified, the
network will not be able to accept and return non-numeric values.

Teacher specifying
The <teacher> tag is a child tag for <neuralNetwork> tag.
<teacher class="com.weighscore.neuro.SimpleTeacher"/>

See Teacher section of this reference manual for more information.

You may skip this definition; and if so, then the system will use the default SimpleTeacher.

Neuron
The neural network’s main object is a neuron. Neurons are described by <neuron> tags, which
are children to <neuralNetwork> tag.
 <neuron input="true" threshold="0.26003716863883036">

 </neuron>

Threshold
Bias (that is called threshold in the system) is set by an attribute threshold of the <neuron>
tag. The threshold is a number that is added to the weighed neuron’s input before the application
of an activation function.

You may skip this definition; and if so, the system will initialize the threshold with a random
value.

Activation
The activation function is defined by the <activation> tag which is a child tag for <neuron>.

See the Activation section of this reference manual for more information.

You may skip this definition; and if so, the system will use the default activation Sigmoid.
<neuron input="true" threshold="0.3196715423362544">
 <activation class="com.weighscore.neuro.Sigmoid">
 <parameter name="beta">1.0</parameter>
 </activation>
...

Set the network’s input and output neurons
You define which neurons will be input or output for the network by setting the <neuron> tag’s
attributes input or output to “true” value.

Statistic
You may define a class of statistic object through which all the values will pass, by the
<statistic> tag which is a child tag for <neuron>.
<statistic class="com.weighscore.neuro.FullStatistic"/>

See the Statistic section of this reference manual to get more information about the statistic
definition.

22

You may skip this definition; and if so, the system will use the default statistic.

Axon and synapses
The neuron output links are defined by its <axon> child tag. The <axon> tag may have multiple
<synapse> children tags.

See the next section for more information about defining synapses.

Synapse

Weight
You may set the weight of a synapse by adding the attribute weight to the <synapse> tag, like
this:
<synapse weight="0.2963048183041408">

You may skip this definition; and if so, the system will initialize the weight with a random value.

Synapse’s output neuron
The <synapse> tag must have two attributes that point to the synapse’s output neuron. The
first is the xlink:type attribute which must have the value “locator”. The second is a hyper
link xlink:href attribute in a form of a XPointer that points to the output neuron.

The XPointer link should always look like "#xpointer(/neuralNetwork/neuron[number])", where
the number is a sequential number of the neuron in this document starting from 1.

The whole example looks like this:
 <neuron>
 <axon>
 <synapse xlink:type="locator" xlink:href="#xpointer(/neuralNetwork/neuron[3])"/>
 <synapse xlink:type="locator" xlink:href="#xpointer(/neuralNetwork/neuron[4])"/>
 </axon>
 </neuron>

This means that this neuron is connected to the third and fourth neuron as defined in this xml
document.

The system is not able to resolve XPointer links that have a form that differs from the described
above.
This way of defining synapses was chosen to avoid senseless IDs in the document; we chose addressing neurons
only by their position in the document, because of the following reasons. 1. While editing the XML definition file,
the user would have to invent new IDs for new neurons; while now he or she may just add neurons to the end to
keep numbers and links. 2. The senseless (surrogate) IDs are not stored in memory, so the system would have to re-
generate them every time when serializing the network to XML stream. 3. Using IDs require the obligatory
accompanying xml file with the dtd or schema file, while relative pointers themselves have a meaning.

But, this method may change in the next version, giving way to being more convenient for a human user to edit the
network definition.

Statistic
You may define the class of a statistic object through which all the values will pass, by the
<statistic> tag which is a child tag for <synapse>.
<statistic class="com.weighscore.neuro.FullStatistic"/>

23

See the Statistic section of this reference manual to get more information about the statistic
definition.

You may skip this definition; if so, the system will use the default statistic.

Neural network special objects

Activation
Every neuron should have an activation function (“activation”). This function takes the sum of
weighed inputs and the bias of the neuron as an argument. There is a couple of different
activation functions, so you can choose the class that defines the activation function appropriate
for your task.

Set the class attribute of the <activation> tag to the appropriate class name. Activations
may have parameters that control their behavior. Activation and parameters are set like this:
<activation class="com.weighscore.neuro.Sigmoid">
 <parameter name="beta">1.0</parameter>
</activation>

Sigmoid
This is the most popular activation for neural networks.

To use it, set the class attribute of the <activation> tag to the value
"com.weighscore.neuro.Sigmoid".

It takes one parameter, named “beta”.

The function is a hyperbolic tangent and is defined as follows:
y = (exp(beta * x) - exp(beta * x * -1)) / (exp(beta * x) + exp(beta * x * -1))

The function converges to 1 for big positive arguments and to –1 for big negative ones; the curve
rapidly crosses the zero point when the argument changes from negative to positive. The beta
parameter controls the angle by which the curve crosses the zero coordinate.

See http://en.wikipedia.org/wiki/Hyperbolic_function for more information.

Linear
To use the Linear activation, set the class attribute of the <activation> tag to the value
"com.weighscore.neuro.Linear".

It takes one parameter, named “beta”.

The function is defined as follows:
y = beta * x

The function’s curve is a straight line. The beta parameter controls its inclination to the x-axis.

Teacher
The network’s teacher is a special object that is responsible for the teaching process. It is
instantiated and kept in the neural network, and it is called when teaching is needed. Different
teachers may have different teaching procedures.

http://en.wikipedia.org/wiki/Hyperbolic_function

24

The teachers depend on neurons’ and synapses’ statistics because they use values stored in them
(for example, the last weight change to compute the momentum).

SimpleTeacher
To use the SimpleTeacher activation, set the class attribute of the <teacher> tag to the
value "com.weighscore.neuro.SimpleTeacher".

This teacher is a simple back propagation teacher. Though it is quite simple, today it is the best
choice to teach the neural networks online, right at the working time. The network can modify its
behavior in response to new events happening and new teaching cases that are presented to it.
You may send teaching commands to the network if new data, that characterizes the previously
taken decision, comes. Teaching online, you make the network adjust its weights and next time a
similar question is asked, a better answer will be given.

The SimpleTeacher requires all synapses and neurons to have MomentumStatistic or it’s
descendants.

The SimpleTeacher has two parameters, momentumCoefficient and learnRate. The first
is a multiplier to the last weight changes; the latter is the multiplier to the computed teaching
values. Please refer to the special literature on the error back propagation method of neural
network training.
<teacher class="com.weighscore.neuro.SimpleTeacher">
 <parameter name="momentumCoefficient">0.2</parameter>
 <parameter name="learnRate">0.4</parameter>
</teacher>

EmpiricTeacher
To use the EmpiricTeacher activation, set the class attribute of the <teacher> tag to the
value "com.weighscore.neuro.EmpiricTeacher".

This teacher is an experimental implementation of a modified back propagation teacher.

This teacher does the following:

• automatically decreases the learn rate while teaching;

• if the error doesn’t decrease, jogs the selected weights and biases of the network,
increases the learn rate and continues training.

The EmpiricTeacher has the same parameters as the SimpleTeacher; and unlike the latter,
it changes the learnRate parameter while teaching.

To use the EmpiricTeacher, all the synapses and neurons should have statistics of the
LastErrorStatistic class.

Statistic
While asking, testing or teaching, the neuron passes through itself and outputs some values.
There are special classes of objects that can record those values and compute some statistical
figures that can be used for teaching as well as for network’s performance analyzing.

Below are the descriptions of the statistic classes available in Weighscore. They are ordered by
their inheritance: last classes are the descendants of the first and have all the parameters that the
previous classes have.

25

N o t e t ha t u s i n g t h e c om p l i c a t ed s t a t i s t i c s i n m a n y n e u r o n s a n d
s y n a p s e s s l o ws d o w n t h e p e r f o r m a n c e o f t h e s y s t e m .
When starting the network design, define the class of the statistic without setting its parameters,
like this:
 <axon>
 <synapse xlink:type="locator" xlink:href="#xpointer(/neuralNetwork/neuron[7])">
 <statistic class="com.weighscore.neuro.AverageGradientStatistic"/>
 </synapse>
....

The statistical values will be added as parameters automatically.

MomentumStatistic
To use the MomentumStatistic statistic, set the class attribute of the <statistic> tag to
the value "com.weighscore.neuro.MomentumStatistic".

This statistic has the following parameters:

- lastCorrection: holds the last change of the weight or threshold;

- teachCnt: the teaching signals counter.

AverageGradientStatistic
To use the AverageGradientStatistic statistic, set the class attribute of <statistic>
tag to the value "com.weighscore.neuro.AverageGradientStatistic".

This statistic is intended to be used in the future for a conjugate gradient teacher.

This statistic has all parameters of MomentumStatistic plus:

- epochCasesCnt: counts the number of epochs (the whole case sets);

- epochCurAgvGradient: the average gradient member for the current epoch;

- epochLastAgvGradient: the average gradient member for the previous epoch.

LastErrorStatistic
To use the LastErrorStatistic statistic, set the class attribute of the <statistic> tag to
the value "com.weighscore.neuro.LastErrorStatistic".

When using EmpiricTeacher, all the synapses and neurons must have statistics of this class.

This statistic has all the parameters of AverageGradientStatistic plus:

- lastErrCnt: the size of an array of the last errors of this synapse or neuron;

- lastAvgErr: the average value of the last lastErrCnt errors of this neuron or
synapse;

- lastAvgErrAbs: the average value of the last lastErrCnt absolute values of errors of
this neuron or synapse;

- lastAvgErrDev: the average difference between the last lastErrCnt errors and the
last lastErrCnt average errors;

- lastAvgErrDevAbs: the average absolute difference between the last lastErrCnt
errors and the last lastErrCnt average errors.

26

FullStatistic
To use the FullStatistic statistic, set the class attribute of the <statistic> tag to the
value "com.weighscore.neuro.FullStatistic".

This statistic has all parameters of LastErrorStatistic plus:

- askCnt: total count of asks;

- askAvg: average value input of this neuron or synapse;

- askAvgPosDev: average positive difference between input and askAvg of this neuron
or synapse;

- askAvgNegDev: average negative difference between input and askAvg of this neuron
or synapse;

- askPosDevCnt: count of the cases when the difference between the input and askAvg
of this neuron or synapse was positive;

- errCnt: testing the actions count; note that teaching includes testing;

- errAvg: average error of this neuron or synapse;

- errAvgPosDev: average positive difference between the error and errAvg of this
neuron or synapse;

- errAvgNegDev: average negative difference between the error and errAvg of this
neuron or synapse;

- errPosDevCnt: count of cases when the difference between the error and errAvg of
this neuron or synapse was positive.

Translator definition

General information

File format
The translator definition is a text XML file which has the predefined structure described in
Translator.dtd file.

Below is the explanation of all neural network tags and their attributes.

Header and root tag
The file should have the following header and root tags:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE translator SYSTEM "Trabslator.dtd">
<translator>

</translator>

27

Field
The only tag allowed between the <translator> tags is the <field> tag. Every <field> tag
corresponds to one field of the data source. It has the name attribute that should match the
datasource field name.

The <field> tag has the type attribute that says if the field is input (a part of the question) or
output (a part of the answer). It takes the value “ask” or “answer”, respectively.

The fields may be of two kinds, passing or translating.

The passing field means that the value in the datasource field just is passed to (or from) the
neuron, possibly divided by some value. The passing field has the <pass> tag as its child.

The translating field sets the correspondence between the string value of the datasource field and
numeric value of one or more neurons. The translating field has the <translate> tag as its
child.

Pass
The <pass> tag may have the dividor attribute holding a divisor by which the datasource
numeric value is divided.

The corresponding neuron is set by the child <activator> tag.

The following example means that the value of input field named “age” is passed to the first
input neuron, divided by 200.
 <field name="age" type="ask">
 <pass dividor="200">
 <activator index="1"/>
 </pass>
 </field>

Translate
The <translate> tag may have one or more child <item> tags corresponding to the
dictionary entries of the datasource field. In other words, every possible value of the datasource
field must have the corresponding <item> tag.

Item
The <item> tag has the value attribute that holds the value of the field’s dictionary entry.

The neuron corresponding to the field and the field’s value is set by the child <activator> tag.

In this example, if the “gender” field has value “m”, the second input neuron gets a 0.5; if it is
“f” then the second input neuron gets the value of –0.5.
 <field name="gender" type="ask">
 <translate>
 <item value="m">
 <activator index="2">
 <range value="0.5" min="0"/>
 </activator>
 </item>
 <item value="f">
 <activator index="2">
 <range value="-0.5" max="0"/>
 </activator>
 </item>

28

 </translate>
 </field>

It is possible to link one datasource field to more than one neuron, selecting which neuron the

ld’s value is “higher”, the fourth neuron gets the

signal is sent to depending on the field's value.

In the following example, if the “education” fie
input value of 0.5, if “high”—then the fifth, if “low”—the sixth. Other neurons get 0 as the input
values.
 <field name="education" type="ask">
 <translate>
 <item value="higher">
 <activator index="4">
 <range value="0.5" min="0.01"/>
 </activator>
 </item>
 <item value="high">
 <activator index="5">
 <range value="0.5" min="0.01"/>
 </activator>
 </item>
 <item value="low">
 <activator index="6">
 <range value="0.5" min="0.01"/>
 </activator>
 </item>
 </translate>
 </field>

Activator
The <activator> tag denotes the neuron to which the value will be passed while asking. The

Range
> tag sets the value which will be passed to the neuron denoted in the parent

min and max. These are used to help to translate back

Network size
neural network structure is a non-trivial task and

have any inner dependencies.

neuron index is set by the index attribute. Note that the indices numbers start from 1 for output
neurons, so that the first output (answer) neuron will have index 1.

Activators of the translating fields should have the <range> child tag.

The <range
<activator> tag, in its value attribute.

The <range> tag may also have attributes
the neuron’s numeric signal to the field string entry.

Neural network designing and
training hints

At this level of scientific research, developing a
is a sort of an art. A developer needs to have an initial experience in building networks. Here are
some hints; though they may not help, if the statistical data available is not excessive or doesn’t

29

If the training error never becomes less than the target (for example, it stops somewhere around
0.5 or 0.3), decrease the learn rate and momentum coefficient.

 to add neurons to some layer.

ng

ng algorithm
ents state that it should have separate training datasource

 datasource should have enough training cases to cover all

e repeated with different starting weight values (if the initial xml

 and check the results to see if the error rate is comparable or slightly higher than the

If this doesn’t help, add more neurons. Consider reading industry specific literature about the
latest research to decide whether to add layers to the network or

When the target error is met, save the trained network to a backup file and attempt to train the
network with a reduced number of neurons. This will help to avoid the common overfitti
problem.

Traini
The optimal training algorithm requirem
and testing datasource. The training
the dependencies between the individual factors. The actual testing datasource may be times
shorter than the training one

The network designer trains the network with the first training datasource. If the target error was
not met, the training must b
network definition file doesn’t have any set weights and thresholds, they will automatically be
initialized with random values. Keep a separate backup copy of the initial network definition
file).

When the error is less than the target error, we should run the testing case set again in the testing
mode,
target. This helps to find out if the network was overfitted in the first training set. If overfitting
happens, try to reduce the overall network size.

	
	Contents
	Introduction
	Terms
	Typefaces
	Important notices
	Enterprise feature notices
	File, program, class and other names, protocol commands
	Console screenshots
	Text file and code listings

	Product Features
	Prerequisites
	nnt: Command Line Tool
	Installation, running and uninstallation
	nnt.config: Configuration reference
	network
	dbdriver
	dburl
	dbuser, dbpassword
	dbtable
	dbquery
	dbidfields

	Operation instructions
	Asking command line
	Teaching and testing command line
	Bulk JDBC data source teaching and testing
	Bulk JDBC data source update with answers
	Asking, teaching and testing the server-side neural network

	Command line options reference
	-n <name> (network)
	-a (ask)
	-u (update)
	-p (probe)
	-r <N> (runs)
	-t <double> (target)
	-c <filename> (config)
	-D<configname=value> (detail)
	-v (verbose)
	-h (help)

	neural.config: Basic conﬁguration of the Enterprise version
	neuralNetwork.origin
	neuralNetwork.origin.xml.path

	nns: The Neural Server
	Installation, launching, stopping and uninstall
	Command line options reference
	-p PORT
	-g
	-l LOGFILE
	-S
	-h

	Call from client
	Test call using telnet
	Calling server from client programs
	java
	Windows Sockets (including a Visual Basic Winsock example)

	Protocol reference
	persistent networkname
	quit
	ask [networkname] question
	teach [networkname] question answer
	test [networkname] question answer
	getAnswerFieldName [networkname | translatorname] index
	getAnswerSize [networkname | translatorname]
	getAskFieldName [networkname | translatorname] index
	getAskSize [networkname | translatorname]
	getFieldNames [networkname | translatorname]
	outputDefinition [networkname | translatorname]
	outputTranslatorDefinition [networkname | translatorname]

	Neural network developer reference
	Neural network structure definition
	General information
	File format
	Header

	Neural Network
	Translator specifying
	Teacher specifying

	Neuron
	Threshold
	Activation
	Set the network’s input and output neurons
	Statistic
	Axon and synapses

	Synapse
	Weight
	Synapse’s output neuron
	Statistic

	Neural network special objects
	Activation
	Sigmoid
	Linear

	Teacher
	SimpleTeacher
	EmpiricTeacher

	Statistic
	MomentumStatistic
	AverageGradientStatistic
	LastErrorStatistic
	FullStatistic

	Translator definition
	General information
	File format
	Header and root tag

	Field
	Pass
	Translate
	Item
	Activator
	Range

	Neural network designing and training hints
	Network size
	Training algorithm

